清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Feature Selection based Ensemble Decision Tree Classification Model for Predicting Severity Level of COPD Disease

人工智能 特征选择 支持向量机 计算机科学 特征提取 模式识别(心理学) 决策树 朴素贝叶斯分类器 机器学习 慢性阻塞性肺病 分类器(UML) 集成学习 数据挖掘 医学 内科学
作者
Banda Srinivas Raja,Tummala Ranga Babu
出处
期刊:Biomedical and Pharmacology Journal [Oriental Scientific Publishing Company]
卷期号:12 (2): 875-886 被引量:5
标识
DOI:10.13005/bpj/1712
摘要

In the current era, research on automated knowledge extraction from Chronic Obstructive Pulmonary Disease (COPD) images is growing rapidly. COPD becomes a highly prevalent disease that impacts both patients and healthcare system. In various medical applications, image classification algorithms are used to predict the disease severity that can help in early diagnosis and decision-making process. Also, for large scale and complex medical images, machine learning techniques are more efficient,accuracy and reliable. Traditional image classification models such as Naïve Bayesian, Neural Networks, SVM, Regression models. etc are used to classify the image using the annotated ROI and image texture features. These models are used as a diagnostic tool in analyzing the COPD and disease prediction. These models are not applicable to classify the COPD using the disease severity level. Also, the accuracy and false positive rate of existing classification models is still far from satisfactory, due to lack of feature extraction and noise handling methods. Therefore, developing an effective classification model for predicting the severity of the COPD using features derived from CT images is a challenge task.In this paper, an ensemble feature selection based classification model was developed, using images features extracted from COPD patients’ CT scan images, to classify disease into “Severity level ” and “Normal level” categories, representing their riskof suffering a COPD disease. We applied five different classifier methods and three state-of-the-art ensemble classifiers to the COPD dataset and validated their performance in terms of F-measure and false positive rate. We found that proposed feature selection based ensemble classifier (F-measure 0.957) had the highest average accuracy for COPD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛弟完成签到 ,获得积分10
7秒前
chcmy完成签到 ,获得积分0
18秒前
肖果完成签到 ,获得积分10
19秒前
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
Dong完成签到 ,获得积分10
34秒前
wjx完成签到 ,获得积分10
1分钟前
噼里啪啦完成签到,获得积分10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
四叶草完成签到 ,获得积分10
1分钟前
1分钟前
003完成签到,获得积分10
1分钟前
fogsea完成签到,获得积分0
1分钟前
yy完成签到 ,获得积分10
1分钟前
666完成签到 ,获得积分10
1分钟前
wenhuanwenxian完成签到 ,获得积分10
1分钟前
jyy应助皮皮采纳,获得10
1分钟前
002完成签到,获得积分10
2分钟前
GankhuyagJavzan完成签到,获得积分10
2分钟前
科研通AI2S应助予秋采纳,获得10
2分钟前
庄怀逸完成签到 ,获得积分10
3分钟前
戚雅柔完成签到 ,获得积分10
3分钟前
AiQi完成签到 ,获得积分10
3分钟前
hdc12138完成签到,获得积分10
3分钟前
allrubbish完成签到,获得积分10
3分钟前
可玩性完成签到 ,获得积分10
3分钟前
甜乎贝贝完成签到 ,获得积分10
4分钟前
深情安青应助风华正茂采纳,获得10
4分钟前
小蚂蚁完成签到 ,获得积分10
4分钟前
Kelsey完成签到 ,获得积分10
4分钟前
晴天完成签到 ,获得积分10
4分钟前
土拨鼠完成签到 ,获得积分10
4分钟前
湖以完成签到 ,获得积分10
4分钟前
蒲蒲完成签到 ,获得积分10
4分钟前
FFFFFF完成签到 ,获得积分10
4分钟前
眯眯眼的安雁完成签到 ,获得积分10
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
心静自然好完成签到 ,获得积分10
5分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300948
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626