A Novel Feature Selection based Ensemble Decision Tree Classification Model for Predicting Severity Level of COPD Disease

人工智能 特征选择 支持向量机 计算机科学 特征提取 模式识别(心理学) 决策树 朴素贝叶斯分类器 机器学习 慢性阻塞性肺病 分类器(UML) 集成学习 数据挖掘 医学 内科学
作者
Banda Srinivas Raja,Tummala Ranga Babu
出处
期刊:Biomedical and Pharmacology Journal [Oriental Scientific Publishing Company]
卷期号:12 (2): 875-886 被引量:5
标识
DOI:10.13005/bpj/1712
摘要

In the current era, research on automated knowledge extraction from Chronic Obstructive Pulmonary Disease (COPD) images is growing rapidly. COPD becomes a highly prevalent disease that impacts both patients and healthcare system. In various medical applications, image classification algorithms are used to predict the disease severity that can help in early diagnosis and decision-making process. Also, for large scale and complex medical images, machine learning techniques are more efficient,accuracy and reliable. Traditional image classification models such as Naïve Bayesian, Neural Networks, SVM, Regression models. etc are used to classify the image using the annotated ROI and image texture features. These models are used as a diagnostic tool in analyzing the COPD and disease prediction. These models are not applicable to classify the COPD using the disease severity level. Also, the accuracy and false positive rate of existing classification models is still far from satisfactory, due to lack of feature extraction and noise handling methods. Therefore, developing an effective classification model for predicting the severity of the COPD using features derived from CT images is a challenge task.In this paper, an ensemble feature selection based classification model was developed, using images features extracted from COPD patients’ CT scan images, to classify disease into “Severity level ” and “Normal level” categories, representing their riskof suffering a COPD disease. We applied five different classifier methods and three state-of-the-art ensemble classifiers to the COPD dataset and validated their performance in terms of F-measure and false positive rate. We found that proposed feature selection based ensemble classifier (F-measure 0.957) had the highest average accuracy for COPD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
shorting发布了新的文献求助10
2秒前
刘金超发布了新的文献求助30
3秒前
在水一方应助沉静弘文采纳,获得10
4秒前
爱卿5271发布了新的文献求助10
4秒前
lucas发布了新的文献求助10
6秒前
kaokao发布了新的文献求助10
7秒前
7秒前
Li梨发布了新的文献求助10
8秒前
完美世界应助小徐采纳,获得10
8秒前
浅听风吟完成签到,获得积分10
9秒前
9秒前
英俊的铭应助儿乖乖采纳,获得10
9秒前
李爱国应助Ww采纳,获得10
10秒前
11秒前
15秒前
打工小房应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
许黎应助科研通管家采纳,获得10
15秒前
科研通AI2S应助yy采纳,获得10
15秒前
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
16秒前
晴天应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
16秒前
麦奇发布了新的文献求助10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
菠菜吖发布了新的文献求助50
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4724537
求助须知:如何正确求助?哪些是违规求助? 4082894
关于积分的说明 12627052
捐赠科研通 3788803
什么是DOI,文献DOI怎么找? 2092505
邀请新用户注册赠送积分活动 1118238
科研通“疑难数据库(出版商)”最低求助积分说明 994869