亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mobility Predictions for IoT Devices Using Gated Recurrent Unit Network

计算机科学 基站 无线传感器网络 可扩展性 无线网络 无线 实时计算 弹道 计算机网络 机动性模型 电信 天文 数据库 物理
作者
Abebe Belay Adege,Hsin‐Piao Lin,Li‐Chun Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (1): 505-517 被引量:51
标识
DOI:10.1109/jiot.2019.2948075
摘要

Wireless and mobile technologies, as well as their users, are growing rapidly as the Internet of Things (IoT) products, such as sensor-network technologies, mobile devices, and supporting applications, become widely dispersed. Owing to the dynamic changes in the wireless networks and the exponential growth of the IoT products, which make it difficult to locate large quantities of users and devices, providing accurate tracking and trajectory predictions in open and highly condensed wireless networks is extremely difficult. An adaptive and scalable system is required to offer accurate location-based services (LBSs) for the success of IoT. To enhance the attainment of IoT, we propose a hybrid of principal component analysis (PCA) and gated recurrent unit (GRU) algorithms for mobility predictions in a wireless urban area. During the system development processes, we first collect an LTE signal from three unmanned aerial vehicle base stations (UAV-BSs), the Wi-Fi signal strength from each reachable Wi-Fi access points (APs), and channel information from the Wi-Fi signal media. We then apply PCA to reduce the number of Wi-Fi features and to decrease signal noise. Next, we train the GRU algorithm to develop models that can predict the mobility of IoT device users. Finally, we evaluate the tracking and trajectory models. To evaluate the proposed techniques, we compare the common parameters of the GRU with those of other deep learning types. The proposed technique provides plausible and state-of-the-art results for mobility predictions of IoT devices in a wireless environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
2分钟前
sllytn完成签到,获得积分10
2分钟前
Chloe发布了新的文献求助10
2分钟前
华仔应助poolgreen采纳,获得10
3分钟前
3分钟前
poolgreen完成签到,获得积分10
3分钟前
柴子完成签到 ,获得积分10
3分钟前
orixero应助Chloe采纳,获得10
3分钟前
Panther完成签到,获得积分10
3分钟前
NS发布了新的文献求助10
3分钟前
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
4分钟前
Chloe发布了新的文献求助10
4分钟前
4分钟前
Chloe完成签到,获得积分10
5分钟前
5分钟前
5分钟前
孤独君浩发布了新的文献求助10
5分钟前
CipherSage应助孤独君浩采纳,获得10
5分钟前
6分钟前
胡杉完成签到,获得积分10
6分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
脑洞疼应助科研通管家采纳,获得10
6分钟前
6分钟前
scm应助科研通管家采纳,获得30
6分钟前
天天快乐应助胡杉采纳,获得10
6分钟前
ldjldj_2004完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
Nan发布了新的文献求助10
7分钟前
科目三应助Dr_an采纳,获得20
7分钟前
7分钟前
poolgreen发布了新的文献求助10
7分钟前
躺赢完成签到 ,获得积分10
7分钟前
7分钟前
Dr_an发布了新的文献求助20
7分钟前
宅宅完成签到 ,获得积分10
7分钟前
大宝发布了新的文献求助10
7分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827283
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456586
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251