Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records

重症监护室 回顾性队列研究 健康档案 医学 电子记录 计算机科学 急诊医学 重症监护医学 人工智能 内科学 医疗保健 万维网 经济增长 经济
作者
Hans-Christian Thorsen-Meyer,Annelaura Bach Nielsen,Anna Marie Nielsen,Benjamin Skov Kaas-Hansen,Palle Toft,Jens Schierbeck,Thomas Strøm,Piotr Jaroslaw Chmura,Marc Heimann,Lars Dybdahl,Lasse Spangsege,Patrick Hulsen,Kirstine Belling,Søren Brunak,Anders Perner
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:2 (4): e179-e191 被引量:124
标识
DOI:10.1016/s2589-7500(20)30018-2
摘要

Summary Background Many mortality prediction models have been developed for patients in intensive care units (ICUs); most are based on data available at ICU admission. We investigated whether machine learning methods using analyses of time-series data improved mortality prognostication for patients in the ICU by providing real-time predictions of 90-day mortality. In addition, we examined to what extent such a dynamic model could be made interpretable by quantifying and visualising the features that drive the predictions at different timepoints. Methods Based on the Simplified Acute Physiology Score (SAPS) III variables, we trained a machine learning model on longitudinal data from patients admitted to four ICUs in the Capital Region, Denmark, between 2011 and 2016. We included all patients older than 16 years of age, with an ICU stay lasting more than 1 h, and who had a Danish civil registration number to enable 90-day follow-up. We leveraged static data and physiological time-series data from electronic health records and the Danish National Patient Registry. A recurrent neural network was trained with a temporal resolution of 1 h. The model was internally validated using the holdout method with 20% of the training dataset and externally validated using previously unseen data from a fifth hospital in Denmark. Its performance was assessed with the Matthews correlation coefficient (MCC) and area under the receiver operating characteristic curve (AUROC) as metrics, using bootstrapping with 1000 samples with replacement to construct 95% CIs. A Shapley additive explanations algorithm was applied to the prediction model to obtain explanations of the features that drive patient-specific predictions, and the contributions of each of the 44 features in the model were analysed and compared with the variables in the original SAPS III model. Findings From a dataset containing 15 615 ICU admissions of 12 616 patients, we included 14 190 admissions of 11 492 patients in our analysis. Overall, 90-day mortality was 33·1% (3802 patients). The deep learning model showed a predictive performance on the holdout testing dataset that improved over the timecourse of an ICU stay: MCC 0·29 (95% CI 0·25–0·33) and AUROC 0·73 (0·71–0·74) at admission, 0·43 (0·40–0·47) and 0·82 (0·80–0·84) after 24 h, 0·50 (0·46–0·53) and 0·85 (0·84–0·87) after 72 h, and 0·57 (0·54–0·60) and 0·88 (0·87–0·89) at the time of discharge. The model exhibited good calibration properties. These results were validated in an external validation cohort of 5827 patients with 6748 admissions: MCC 0·29 (95% CI 0·27–0·32) and AUROC 0·75 (0·73–0·76) at admission, 0·41 (0·39–0·44) and 0·80 (0·79–0·81) after 24 h, 0·46 (0·43–0·48) and 0·82 (0·81–0·83) after 72 h, and 0·47 (0·44–0·49) and 0·83 (0·82–0·84) at the time of discharge. Interpretation The prediction of 90-day mortality improved with 1-h sampling intervals during the ICU stay. The dynamic risk prediction can also be explained for an individual patient, visualising the features contributing to the prediction at any point in time. This explanation allows the clinician to determine whether there are elements in the current patient state and care that are potentially actionable, thus making the model suitable for further validation as a clinical tool. Funding Novo Nordisk Foundation and the Innovation Fund Denmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助JLiu612采纳,获得10
1秒前
大气的灵槐完成签到,获得积分20
2秒前
慕子默完成签到,获得积分10
6秒前
树叶有专攻完成签到,获得积分10
6秒前
Wency完成签到,获得积分10
7秒前
羊鱼发布了新的文献求助50
9秒前
Siriya完成签到,获得积分10
10秒前
11秒前
hbj完成签到,获得积分10
11秒前
zino完成签到,获得积分10
12秒前
YCI完成签到 ,获得积分20
13秒前
随遇而安应助Gates采纳,获得20
15秒前
怕孤单的听寒完成签到,获得积分10
15秒前
19秒前
研团子完成签到,获得积分10
19秒前
慕青应助科研通管家采纳,获得10
20秒前
帮主哥哥应助科研通管家采纳,获得20
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得100
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
许甜甜鸭应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
二三应助科研通管家采纳,获得10
20秒前
温暖小松鼠完成签到 ,获得积分10
20秒前
学术大牛完成签到,获得积分10
25秒前
29秒前
29秒前
YCI发布了新的文献求助10
30秒前
31秒前
31秒前
leonork完成签到,获得积分10
31秒前
踏实的无敌完成签到,获得积分10
31秒前
Hello应助学术大牛采纳,获得10
32秒前
32秒前
勿明完成签到,获得积分10
33秒前
淡然黑猫发布了新的文献求助10
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834973
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498771
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705366
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123