Corydalis Rhizoma as a model for herb-derived trace metabolites exploration: A cross-mapping strategy involving multiple doses and samples

化学 延胡索 代谢物 草本植物 代谢组学 传统医学 草药 初级代谢物 色谱法 计算生物学 生物化学 生物 医学 病理 中医药 替代医学
作者
Chanjuan Yu,Fengyun Wang,Xinyue Liu,Jiayan Miao,Siqi Tang,Qin Jiang,Xudong Tang,Xiaoyan Gao
出处
期刊:Journal of Pharmaceutical Analysis [Elsevier BV]
卷期号:11 (3): 308-319 被引量:8
标识
DOI:10.1016/j.jpha.2020.03.006
摘要

Deciphering the metabolites of multiple components in herbal medicine has far-reaching significance for revealing pharmacodynamic ingredients. However, most chemical components of herbal medicine are secondary metabolites with low content whose in vivo metabolites are close to trace amounts, making it difficult to achieve comprehensive detection and identification. In this paper, an efficient strategy was proposed: herb-derived metabolites were predicted according to the structural characteristics and metabolic reactions of chemical constituents in Corydalis Rhizoma and chemical structure screening tables for metabolites were conducted. The fragmentation patterns were summarized from representative standards combining with specific cleavage behaviors to deduce structures of metabolites. Ion abundance plays an important role in compound identification, and high ion abundance can improve identification accuracy. The types of metabolites in different biological samples were very similar, but their ion abundance might be different. Therefore, for trace metabolites in biological samples, we used the following two methods to process: metabolites of high dose herbal extract were analyzed to characterize those of clinical dose herbal extracts in the same biological samples; cross-mapping of different biological samples was applied to identify trace metabolites based on the fact that a metabolite has different ion abundance in different biological samples. Compared with not using this strategy, 44 more metabolites of clinical dose herbal extract were detected. This study improved the depth, breadth, and accuracy of current methods for herb-derived metabolites characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC发布了新的文献求助10
3秒前
科研通AI2S应助老实的艺文采纳,获得10
4秒前
5秒前
youngyang完成签到 ,获得积分10
7秒前
菠萝完成签到 ,获得积分10
7秒前
9秒前
阳光灿烂发布了新的文献求助10
11秒前
CC完成签到,获得积分10
12秒前
不想起昵称完成签到 ,获得积分10
15秒前
16秒前
柯一一应助刘松采纳,获得10
17秒前
Jasper应助漂亮的冰菱采纳,获得10
20秒前
22秒前
平常完成签到,获得积分10
22秒前
科目三应助霸气的黑猫采纳,获得10
22秒前
万能图书馆应助云腾致雨采纳,获得10
23秒前
刘松完成签到,获得积分20
23秒前
细心的安双完成签到,获得积分20
24秒前
zero完成签到,获得积分10
24秒前
耍酷的翠曼完成签到,获得积分10
25秒前
轶Y发布了新的文献求助10
25秒前
Handy发布了新的文献求助10
28秒前
28秒前
天空完成签到,获得积分10
29秒前
司空豁应助幽深绿藤采纳,获得10
29秒前
西瓜完成签到 ,获得积分10
30秒前
QY11发布了新的文献求助30
31秒前
Esther应助太阳地里1911采纳,获得10
32秒前
32秒前
molo完成签到,获得积分10
33秒前
无花果应助拼搏老鼠采纳,获得10
34秒前
34秒前
34秒前
Handy完成签到,获得积分10
35秒前
Lucas应助李锐采纳,获得10
35秒前
leec发布了新的文献求助10
36秒前
Hawaii完成签到,获得积分10
37秒前
科目三应助王安娜采纳,获得10
37秒前
研友_VZG7GZ应助科研通管家采纳,获得10
38秒前
8R60d8应助科研通管家采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921786
求助须知:如何正确求助?哪些是违规求助? 3466588
关于积分的说明 10943747
捐赠科研通 3195184
什么是DOI,文献DOI怎么找? 1765557
邀请新用户注册赠送积分活动 855645
科研通“疑难数据库(出版商)”最低求助积分说明 794935