Faster R–CNN–based apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic harvesting

RGB颜色模型 人工智能 果园 计算机视觉 计算机科学 树(集合论) 机器视觉 数学 园艺 生物 数学分析
作者
Longsheng Fu,Yaqoob Majeed,Xin Zhang,Manoj Karkee,Qin Zhang
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:197: 245-256 被引量:134
标识
DOI:10.1016/j.biosystemseng.2020.07.007
摘要

Apples in modern orchards with vertical-fruiting-wall trees are comparatively easier to harvest and specifically suitable for robotic picking, where accurate apple detection and obstacle-free access are fundamentally important. However, field images have complex backgrounds because of the presence of nontarget trees and fruit in adjacent rows. An outdoor machine vision system was developed with a low-cost Kinect V2 sensor to improve the accuracy of apple detection by filtering the background objects using depth features. A total of 800 set images were acquired in a commercial fruiting-wall Scifresh apple orchard with dense-foliage canopy. Images were collected in both daytime and nighttime with artificial light. The sensor was kept at 0.5 m to the tree canopies. A depth threshold of 1.2 m was used to remove background. Two Faster R–CNN based architectures ZFNet and VGG16 were employed to detect the Original-RGB and the Foreground-RGB images. Results showed that the highest average precision (AP) of 0.893 was achieved for the Foreground-RGB images with VGG16, which cost 0.181 s on average to process a 1920 × 1080 image. AP values for the Foreground-RGB images with ZFNet and VGG16 were both higher than those of the Original-RGB images. The results indicated that the use of a depth filter to remove background trees improved fruit detection accuracy by 2.5% and that only a minimal difference was found in processing speed between two image datasets. The proposed technique and results are expected to be applicable for robotic harvesting on fruiting-wall apple orchards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张雯思发布了新的文献求助10
刚刚
科研小白发布了新的文献求助10
1秒前
TOM发布了新的文献求助10
2秒前
xsj完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
碎米花完成签到 ,获得积分10
6秒前
qyp完成签到,获得积分10
7秒前
等风完成签到,获得积分10
8秒前
小马甲应助安小敏采纳,获得10
10秒前
旺仔发布了新的文献求助10
11秒前
11秒前
11秒前
和谐的敏发布了新的文献求助10
11秒前
guan给guan的求助进行了留言
12秒前
13秒前
victorzou发布了新的文献求助10
14秒前
14秒前
14秒前
生动梦松应助BLUE采纳,获得30
15秒前
浅笑发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
18秒前
张雯思发布了新的文献求助10
19秒前
栾小鱼发布了新的文献求助10
19秒前
冰啊冰完成签到,获得积分10
19秒前
19秒前
情怀应助等风采纳,获得10
21秒前
彭于晏应助安静的幼旋采纳,获得10
22秒前
豪哥发布了新的文献求助10
22秒前
23秒前
努力努力发布了新的文献求助10
23秒前
pass完成签到,获得积分10
24秒前
浅笑完成签到,获得积分10
25秒前
英姑应助和谐的敏采纳,获得10
25秒前
胡超阳发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140