Temperature-dependent band gaps in several semiconductors: from the role of electron–phonon renormalization

凝聚态物理 带隙 半导体 声子 离子键合 钻石 重整化 材料科学 电子 化学 物理 离子 量子力学 光电子学 复合材料
作者
Yiming Zhang,Ziyu Wang,Jinyang Xi,Jiong Yang
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:32 (47): 475503-475503 被引量:30
标识
DOI:10.1088/1361-648x/aba45d
摘要

Temperature dependence of band gap is one of the most fundamental properties for semiconductors, and has strong influences on many applications. The renormalization of the band gap at finite temperatures is due to the lattice expansion and the phonon-induced atomic vibrations. In this work, we apply the recently-developed electron–phonon renormalization (EPR) method to study the temperature-dependent band gap in some classical covalent (diamond, Si, and SiC) and ionic semiconductors (MgO and NaCl). The contributions from both the lattice expansion and the phonon-induced atomic vibrations at finite temperatures are considered. The results show that the band gaps Eg all decrease as temperature T increases, consistent with the experiments and other theoretical studies (e.g., from 0 K to 1500 K, the reductions are ∼0.451 eV for diamond and ∼1.148 eV for MgO, respectively). The covalent compounds investigated show weaker temperature dependences of Egs than the ionic compounds, due to the much weaker lattice expansions and therefore low contributions from these. The zero-point motion effect has greater influence on the band gap in semiconductors with light atoms, such as diamond (reduction ∼0.437 eV), due to larger atomic displacements. By decomposing the EPR effect into respective phonon modes, it is found that the high-frequency optical phonon vibrations dominate the temperature-dependent band gap in both covalent and ionic compounds. Our work provides the fundamental understandings on the temperature-dependent band gaps caused by lattice dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
cdercder应助kg采纳,获得10
3秒前
lipppu发布了新的文献求助10
4秒前
5秒前
笨鸟先飞发布了新的文献求助10
6秒前
小白一号完成签到 ,获得积分10
6秒前
顺利小陈发布了新的文献求助20
9秒前
共享精神应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得20
11秒前
Singularity应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
木木发布了新的文献求助10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
11秒前
依人如梦完成签到 ,获得积分10
15秒前
搜集达人应助木木采纳,获得10
16秒前
山河发布了新的文献求助10
17秒前
顺利小陈完成签到,获得积分10
17秒前
科研通AI5应助加菲丰丰采纳,获得10
18秒前
英俊的铭应助笨鸟先飞采纳,获得10
18秒前
18秒前
高高完成签到,获得积分10
19秒前
明亮元柏发布了新的文献求助10
20秒前
20秒前
大模型应助纯真的笑容采纳,获得20
21秒前
22秒前
23秒前
mo发布了新的文献求助10
27秒前
34秒前
明亮元柏完成签到,获得积分20
35秒前
36秒前
Zzz_Carlos完成签到 ,获得积分10
37秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878