Prediction of hypotension events with physiologic vital sign signatures in the intensive care unit

医学 重症监护室 生命体征 接收机工作特性 血压 重症监护 心率 麻醉 急诊医学 重症监护医学 内科学
作者
Joo Heung Yoon,Vincent Jeanselme,Artur Dubrawski,Marilyn Hravnak,Michael R. Pinsky,Gilles Clermont
出处
期刊:Critical Care [BioMed Central]
卷期号:24 (1) 被引量:12
标识
DOI:10.1186/s13054-020-03379-3
摘要

Abstract Background Even brief hypotension is associated with increased morbidity and mortality. We developed a machine learning model to predict the initial hypotension event among intensive care unit (ICU) patients and designed an alert system for bedside implementation. Materials and methods From the Medical Information Mart for Intensive Care III (MIMIC-3) dataset, minute-by-minute vital signs were extracted. A hypotension event was defined as at least five measurements within a 10-min period of systolic blood pressure ≤ 90 mmHg and mean arterial pressure ≤ 60 mmHg. Using time series data from 30-min overlapping time windows, a random forest (RF) classifier was used to predict risk of hypotension every minute. Chronologically, the first half of extracted data was used to train the model, and the second half was used to validate the trained model. The model’s performance was measured with area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC). Hypotension alerts were generated using risk score time series, a stacked RF model. A lockout time were applied for real-life implementation. Results We identified 1307 subjects (1580 ICU stays) as the hypotension group and 1619 subjects (2279 ICU stays) as the non-hypotension group. The RF model showed AUROC of 0.93 and 0.88 at 15 and 60 min, respectively, before hypotension, and AUPRC of 0.77 at 60 min before. Risk score trajectories revealed 80% and > 60% of hypotension predicted at 15 and 60 min before the hypotension, respectively. The stacked model with 15-min lockout produced on average 0.79 alerts/subject/hour (sensitivity 92.4%). Conclusion Clinically significant hypotension events in the ICU can be predicted at least 1 h before the initial hypotension episode. With a highly sensitive and reliable practical alert system, a vast majority of future hypotension could be captured, suggesting potential real-life utility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林星落完成签到 ,获得积分10
4秒前
二世小卒完成签到 ,获得积分10
6秒前
落叶为谁殇完成签到,获得积分10
10秒前
超级的妙晴完成签到 ,获得积分10
16秒前
历冰雪完成签到,获得积分10
17秒前
339564965完成签到,获得积分10
22秒前
ccc完成签到,获得积分10
24秒前
欧皇完成签到,获得积分20
26秒前
别闹闹完成签到 ,获得积分10
26秒前
只想顺利毕业的科研狗完成签到,获得积分10
26秒前
欧皇发布了新的文献求助10
28秒前
研友_ZA2B68完成签到,获得积分10
29秒前
花阳年华完成签到 ,获得积分10
29秒前
自由的厉完成签到 ,获得积分10
29秒前
Kelvin.Tsi完成签到 ,获得积分10
29秒前
握瑾怀瑜完成签到 ,获得积分0
31秒前
xueshidaheng完成签到,获得积分0
32秒前
风信子完成签到,获得积分10
34秒前
科研通AI5应助不安的白昼采纳,获得10
34秒前
桥豆麻袋完成签到,获得积分10
35秒前
chenkj完成签到,获得积分10
35秒前
ikun完成签到,获得积分10
35秒前
Helios完成签到,获得积分10
36秒前
木康薛完成签到,获得积分10
36秒前
Ccccn完成签到,获得积分10
37秒前
执着的书蝶完成签到,获得积分10
37秒前
BK_201完成签到,获得积分10
37秒前
abiorz完成签到,获得积分0
38秒前
Brief完成签到,获得积分10
39秒前
窗外是蔚蓝色完成签到,获得积分0
39秒前
nanostu完成签到,获得积分10
39秒前
鹏举瞰冷雨完成签到,获得积分10
40秒前
吐司炸弹完成签到,获得积分10
40秒前
mayfly完成签到,获得积分10
40秒前
星辰大海应助科研通管家采纳,获得10
40秒前
田様应助科研通管家采纳,获得10
40秒前
40秒前
科研通AI5应助科研通管家采纳,获得50
40秒前
41秒前
Owen应助科研通管家采纳,获得10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777682
求助须知:如何正确求助?哪些是违规求助? 3323111
关于积分的说明 10213007
捐赠科研通 3038447
什么是DOI,文献DOI怎么找? 1667400
邀请新用户注册赠送积分活动 798115
科研通“疑难数据库(出版商)”最低求助积分说明 758273