计算机科学
腹腔镜胆囊切除术
工作流程
任务(项目管理)
人工智能
推论
手术计划
领域(数学)
阶段(地层学)
模式识别(心理学)
外科
古生物学
经济
管理
纯数学
生物
数据库
医学
数学
作者
Tobias Czempiel,Magdalini Paschali,Matthias Keicher,Walter Simson,Hubertus Feußner,Seong Tae Kim,Nassir Navab
标识
DOI:10.1007/978-3-030-59716-0_33
摘要
Automatic surgical phase recognition is a challenging and crucial task with the potential to improve patient safety and become an integral part of intra-operative decision-support systems. In this paper, we propose, for the first time in workflow analysis, a Multi-Stage Temporal Convolutional Network (MS-TCN) that performs hierarchical prediction refinement for surgical phase recognition. Causal, dilated convolutions allow for a large receptive field and online inference with smooth predictions even during ambiguous transitions. Our method is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos with and without the use of additional surgical tool information. Outperforming various state-of-the-art LSTM approaches, we verify the suitability of the proposed causal MS-TCN for surgical phase recognition.
科研通智能强力驱动
Strongly Powered by AbleSci AI