A Depthwise Separable Convolution Architecture for CNN Accelerator

计算机科学 现场可编程门阵列 卷积神经网络 专用集成电路 卷积(计算机科学) 嵌入式系统 计算机硬件 计算机体系结构 人工智能 计算机工程 人工神经网络
作者
Harsh Srivastava,Kishor Sarawadekar
标识
DOI:10.1109/aspcon49795.2020.9276672
摘要

Convolutional Neural Network (CNN) give an unmatched performance in image classification, object detection and object tracking. As many of the modern embedded systems for portable devices deals with similar tasks, they often deploy CNN based algorithms. The intensive computational workload associated with CNN inference demands powerful computing platforms like Graphics Processing Units. However, deploying CNN on mobile devices demands low power, application specific computing platforms like Field-Programmable Gate Array (FPGA) and Application-Specific Integrated Circuit (ASIC) which can work as computation accelerator units. Moreover, using certain algorithmic optimizations like using Depthwise Separable Convolution instead of standard convolution, significantly reduces the computational burden of CNN inference. This paper discusses a pipelined architecture of Depthwise Separable Convolution followed by activation and pooling operations for a single layer of CNN. The architecture is implemented on Xilinx 7 series FPGA and works at a clock period of 40ns. It can be used as a building block for an integrated system of CNN accelerator for implementation on FPGAs of different sizes. This work focuses on speeding up the convolution process, instead of implementing large design of an integrated system of CNN accelerator which makes it difficult to focus on performance of the subsystems. To the best of the knowledge of the authors, earlier works have implemented an integrated system of CNN accelerator but the blueprint for architecture of a single layer of CNN is not discussed individually, which can be a great support for the beginners in understanding FPGA based computing accelerators for CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yug完成签到,获得积分10
刚刚
科研通AI5应助啦啦啦采纳,获得10
1秒前
1秒前
siyue完成签到 ,获得积分10
1秒前
淡淡夕阳完成签到,获得积分10
1秒前
fanxiao发布了新的文献求助10
1秒前
123完成签到,获得积分20
2秒前
Ava应助不想练腿采纳,获得10
2秒前
3秒前
agf完成签到 ,获得积分10
3秒前
月寒发布了新的文献求助10
3秒前
蓝月发布了新的文献求助10
3秒前
3秒前
汉堡包应助温暖的妙菡采纳,获得10
3秒前
hanzhipad应助halashao采纳,获得10
4秒前
科研通AI5应助贪玩白开水采纳,获得10
5秒前
5秒前
MchemG应助爱飞的鱼采纳,获得30
6秒前
6秒前
Leung完成签到,获得积分10
6秒前
6秒前
6秒前
du发布了新的文献求助10
7秒前
7秒前
卡卡西应助carl采纳,获得20
7秒前
8秒前
一朵云发布了新的文献求助10
8秒前
8秒前
端庄毛巾完成签到,获得积分10
8秒前
科研通AI5应助rio采纳,获得30
8秒前
chloe完成签到,获得积分10
9秒前
丰富冰凡发布了新的文献求助10
10秒前
翠甜翠甜大西瓜完成签到 ,获得积分10
10秒前
陈杨发布了新的文献求助10
11秒前
WKY发布了新的文献求助10
11秒前
华仔应助云ch采纳,获得10
12秒前
子车茗应助那地方采纳,获得20
12秒前
13秒前
糕糕完成签到 ,获得积分20
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817476
求助须知:如何正确求助?哪些是违规求助? 3360822
关于积分的说明 10409731
捐赠科研通 3078922
什么是DOI,文献DOI怎么找? 1690869
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065