Molecular basis for coke strength: Stacking-fault structure of wrinkled carbon layers

雷亚克夫 焦炭 堆积 材料科学 分子动力学 叠加断层 复合材料 碳纤维 结晶学 化学物理 化学 计算化学 复合数 冶金 有机化学 位错 原子间势
作者
Yan Tian,Guang‐Yue Li,Hang Zhang,Jieping Wang,Zi-Zhao Ding,Rui Guo,Huan Cheng,Yinghua Liang
出处
期刊:Carbon [Elsevier BV]
卷期号:162: 56-65 被引量:39
标识
DOI:10.1016/j.carbon.2020.02.026
摘要

Abstract A macromolecular model with formula C60468H2193O527N468S49 was constructed for Pingyao coke by using microstructural characteristics and theoretical calculations. The coke model geometry was obtained by simulated annealing algorithm in molecular dynamics simulations with reactive force field (ReaxFF). ReaxFF parameters were modified iteratively until the model geometry agreed with X-ray photoelectron spectroscopy and X-ray diffraction data. The model indicates that the carbon matrix in coke is composed of wrinkled carbon layers, which agrees with reported high-resolution transmission electron microscope results. Neighboring carbon layers are not synclastic and have some stacking faults (such as arch-shaped moieties and screw dislocation), which result in increased layer spacing or non-parallel layers. To investigate the molecular basis for coke strength, ReaxFF simulations of the coke compression process were performed at 300 K and 3500 K, respectively. Results showed that the stacking-fault structure of wrinkled carbon layers was the main microscopic cause of coke strength. Wrinkled carbon layers can disperse the external force, and stacking-fault moieties restrained the interface slippage of carbon layers. Coke structural changes that were caused by the external force presented different characteristics at different temperatures. High temperatures aid the coke matrix reconstruction and prompt the formation of large and planar carbon layers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
顾矜应助LIIII采纳,获得10
2秒前
NexusExplorer应助戴岱采纳,获得10
2秒前
SciGPT应助wangchenhong采纳,获得10
3秒前
自挂东南枝完成签到,获得积分10
3秒前
gxxgle发布了新的文献求助10
3秒前
优雅破茧完成签到,获得积分10
4秒前
二二二发布了新的文献求助10
5秒前
酷波er应助外星人采纳,获得10
7秒前
8秒前
SRsora完成签到,获得积分10
8秒前
优雅破茧发布了新的文献求助10
9秒前
lss发布了新的文献求助30
11秒前
南极洲可乐完成签到,获得积分10
11秒前
11秒前
zf2023完成签到,获得积分10
11秒前
沅兮完成签到 ,获得积分10
12秒前
12秒前
xa应助激情的蜗牛采纳,获得30
12秒前
科研通AI5应助风兮雨采纳,获得10
12秒前
不安新晴发布了新的文献求助10
12秒前
12秒前
传奇3应助meng采纳,获得10
12秒前
不可以懒懒完成签到,获得积分10
14秒前
田恬完成签到,获得积分10
14秒前
虬江学者发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
linn发布了新的文献求助20
17秒前
17秒前
辣小扬发布了新的文献求助10
21秒前
22秒前
共享精神应助大聪明采纳,获得10
23秒前
24秒前
25秒前
积极乐观阳光开朗完成签到,获得积分10
25秒前
Tapioca完成签到,获得积分10
27秒前
yuyuyuyuyuyuyu完成签到,获得积分10
28秒前
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866757
求助须知:如何正确求助?哪些是违规求助? 3409176
关于积分的说明 10661921
捐赠科研通 3133281
什么是DOI,文献DOI怎么找? 1728138
邀请新用户注册赠送积分活动 832684
科研通“疑难数据库(出版商)”最低求助积分说明 780393