Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1

计算机科学 计算 采样(信号处理) 概率逻辑 近似贝叶斯计算 蒙特卡罗方法 拓扑(电路) 算法 重要性抽样 数据挖掘 贝叶斯概率 理论计算机科学 数学 人工智能 统计 滤波器(信号处理) 组合数学 计算机视觉 推论
作者
Alexander Schaaf,Miguel de la Varga,Florian Wellmann,Clare E. Bond
出处
期刊:Geoscientific Model Development [Copernicus Publications]
卷期号:14 (6): 3899-3913 被引量:19
标识
DOI:10.5194/gmd-14-3899-2021
摘要

Abstract. Structural geomodeling is a key technology for the visualization and quantification of subsurface systems. Given the limited data and the resulting necessity for geological interpretation to construct these geomodels, uncertainty is pervasive and traditionally unquantified. Probabilistic geomodeling allows for the simulation of uncertainties by automatically constructing geomodel ensembles from perturbed input data sampled from probability distributions. But random sampling of input parameters can lead to construction of geomodels that are unrealistic, either due to modeling artifacts or by not matching known information about the regional geology of the modeled system. We present a method to incorporate geological information in the form of known geomodel topology into stochastic simulations to constrain resulting probabilistic geomodel ensembles using the open-source geomodeling software GemPy. Simulated geomodel realizations are checked against topology information using an approximate Bayesian computation approach to avoid the specification of a likelihood function. We demonstrate how we can infer the posterior distributions of the model parameters using topology information in two experiments: (1) a synthetic geomodel using a rejection sampling scheme (ABC-REJ) to demonstrate the approach and (2) a geomodel of a subset of the Gullfaks field in the North Sea comparing both rejection sampling and a sequential Monte Carlo sampler (ABC-SMC). Possible improvements to processing speed of up to 10.1 times are discussed, focusing on the use of more advanced sampling techniques to avoid the simulation of unfeasible geomodels in the first place. Results demonstrate the feasibility of using topology graphs as a summary statistic to restrict the generation of geomodel ensembles with known geological information and to obtain improved ensembles of probable geomodels which respect the known topology information and exhibit reduced uncertainty using stochastic simulation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助陈可欣采纳,获得10
1秒前
4秒前
莱贝特发布了新的文献求助10
4秒前
4秒前
打打应助CHB只争朝夕采纳,获得10
6秒前
cryjslong完成签到,获得积分10
6秒前
6秒前
赘婿应助留胡子的之云采纳,获得10
6秒前
堂风发布了新的文献求助30
6秒前
王子完成签到,获得积分10
10秒前
kyt完成签到,获得积分10
11秒前
exosome发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
陈鹿华完成签到 ,获得积分10
15秒前
852应助Guoqiang采纳,获得10
15秒前
Helium发布了新的文献求助10
17秒前
wanci应助Ivy采纳,获得10
18秒前
ppp发布了新的文献求助10
18秒前
浮云发布了新的文献求助10
18秒前
18秒前
Akim应助Jun采纳,获得10
20秒前
21秒前
SciGPT应助迅速的八宝粥采纳,获得10
22秒前
大模型应助小云采纳,获得10
23秒前
23秒前
qin123发布了新的文献求助10
26秒前
llg发布了新的文献求助10
26秒前
ppp完成签到,获得积分20
27秒前
高大美发布了新的文献求助10
29秒前
wangli发布了新的文献求助10
31秒前
32秒前
杰桑的西地那非完成签到 ,获得积分10
34秒前
36秒前
guyan完成签到,获得积分10
36秒前
鸡脖侠完成签到,获得积分10
37秒前
高大美完成签到,获得积分20
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669