Spatiotemporal Learning of Multivehicle Interaction Patterns in Lane-Change Scenarios

干扰素 计算机科学 非参数统计 聚类分析 混合模型 高斯过程 贝叶斯概率 人工智能 领域(数学) 机器学习 潜在Dirichlet分配 高斯分布 主题模型 数学 计量经济学 量子力学 物理 纯数学
作者
Chengyuan Zhang,Jiacheng Zhu,Wenshuo Wang,Junqiang Xi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 6446-6459 被引量:10
标识
DOI:10.1109/tits.2021.3057645
摘要

Interpretation of common-yet-challenging interaction scenarios can benefit well-founded decisions for autonomous vehicles. Previous research achieved this using their prior knowledge of specific scenarios with predefined models, limiting their adaptive capabilities. This paper describes a Bayesian nonparametric approach that leverages continuous (i.e., Gaussian processes) and discrete (i.e., Dirichlet processes) stochastic processes to reveal underlying interaction patterns of the ego vehicle with other nearby vehicles. Our model relaxes dependency on the number of surrounding vehicles by developing an acceleration-sensitive velocity field based on Gaussian processes. The experiment results demonstrate that the velocity field can represent the spatial interactions between the ego vehicle and its surroundings. Then, a discrete Bayesian nonparametric model, integrating Dirichlet processes and hidden Markov models, is developed to learn the interaction patterns over the temporal space by segmenting and clustering the sequential interaction data into interpretable granular patterns automatically. We then evaluate our approach in the highway lane-change scenarios using the highD dataset collected from real-world settings. Results demonstrate that our proposed Bayesian nonparametric approach provides an insight into the complicated lane-change interactions of the ego vehicle with multiple surrounding traffic participants based on the interpretable interaction patterns and their transition properties in temporal relationships. Our proposed approach sheds light on efficiently analyzing other kinds of multi-agent interactions, such as vehicle-pedestrian interactions. View the demos via https://youtu.be/z_vf9UHtdAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
step发布了新的文献求助10
3秒前
3秒前
123456发布了新的文献求助10
4秒前
小徐801发布了新的文献求助10
5秒前
科研通AI6应助李青溟采纳,获得10
5秒前
刘佳佳完成签到 ,获得积分10
5秒前
完美怀蕾完成签到,获得积分10
6秒前
爱喝奶茶的柚子完成签到,获得积分10
6秒前
顾矜应助初夏采纳,获得10
6秒前
6秒前
周生发布了新的文献求助10
6秒前
英俊的铭应助han采纳,获得10
7秒前
7秒前
轻松梦露发布了新的文献求助10
7秒前
弄香完成签到,获得积分10
8秒前
想嘛呢关注了科研通微信公众号
8秒前
容容容发布了新的文献求助10
8秒前
在水一方应助黄臻采纳,获得10
9秒前
朱成思完成签到,获得积分10
10秒前
Georges-09发布了新的文献求助10
11秒前
花卷完成签到,获得积分10
11秒前
wh完成签到 ,获得积分10
11秒前
cc发布了新的文献求助10
12秒前
充电宝应助晶晶采纳,获得10
12秒前
官官完成签到 ,获得积分10
12秒前
123456完成签到,获得积分20
13秒前
缓慢怜翠发布了新的文献求助10
13秒前
HAL9000发布了新的文献求助10
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208766
求助须知:如何正确求助?哪些是违规求助? 4386090
关于积分的说明 13659853
捐赠科研通 4245117
什么是DOI,文献DOI怎么找? 2329131
邀请新用户注册赠送积分活动 1326937
关于科研通互助平台的介绍 1279192