Network Patterns of Herbal Combinations in Traditional Chinese Clinical Prescriptions

药方 传统医学 医学 草本植物 中医药 草药 数据挖掘 替代医学 计算机科学 药理学 病理
作者
Ning Wang,Ninglin Du,Yonghong Peng,Kuo Yang,Zixin Shu,Kai Chang,Di Wu,Jian Yu,Caiyan Jia,Yana Zhou,Xiaodong Li,Baoyan Liu,Z Gao,Runshun Zhang,Xuezhong Zhou
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:11 被引量:15
标识
DOI:10.3389/fphar.2020.590824
摘要

As a well-established multidrug combinations schema, traditional Chinese medicine (herbal prescription) has been used for thousands of years in real-world clinical settings. This paper uses a complex network approach to investigate the regularities underlying multidrug combinations in herbal prescriptions. Using five collected large-scale real-world clinical herbal prescription datasets, we construct five weighted herbal combination networks with herb as nodes and herbal combinational use in herbal prescription as links. We found that the weight distribution of herbal combinations displays a clear power law, which means that most herb pairs were used in low frequency and some herb pairs were used in very high frequency. Furthermore, we found that it displays a clear linear negative correlation between the clustering coefficients and the degree of nodes in the herbal combination network (HCNet). This indicates that hierarchical properties exist in the HCNet. Finally, we investigate the molecular network interaction patterns between herb related target modules (i.e., subnetworks) in herbal prescriptions using a network-based approach and further explore the correlation between the distribution of herb combinations and prescriptions. We found that the more the hierarchical prescription, the better the corresponding effect. The results also reflected a well-recognized principle called “ Jun-Chen-Zuo-Shi ” in TCM formula theories. This also gives references for multidrug combination development in the field of network pharmacology and provides the guideline for the clinical use of combination therapy for chronic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限海白完成签到,获得积分20
刚刚
橙子发布了新的文献求助10
刚刚
歪比巴卜关注了科研通微信公众号
刚刚
蓝橙发布了新的文献求助10
刚刚
刚刚
cc完成签到 ,获得积分10
1秒前
huhdcid发布了新的文献求助30
1秒前
zz发布了新的文献求助10
1秒前
yundanli完成签到,获得积分20
1秒前
2秒前
QQ完成签到,获得积分10
2秒前
2秒前
xxx完成签到,获得积分10
2秒前
2秒前
慕青应助忧心的萃采纳,获得10
3秒前
原野发布了新的文献求助10
3秒前
3秒前
COSMAO完成签到,获得积分0
3秒前
人九发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
万能图书馆应助王琳琳采纳,获得10
4秒前
汤飞柏发布了新的文献求助10
4秒前
szxhandsome发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
欧阳大龙完成签到,获得积分10
5秒前
ding应助北冥鱼采纳,获得10
6秒前
JamesPei应助sule采纳,获得10
6秒前
艾斯完成签到 ,获得积分10
6秒前
Alano完成签到,获得积分10
6秒前
yaya发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
Jasper应助向南采纳,获得10
8秒前
无羡发布了新的文献求助10
8秒前
addr发布了新的文献求助10
8秒前
9秒前
橙子完成签到,获得积分10
9秒前
研狗发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887