铁电性
材料科学
磁滞
铁电聚合物
热滞后
极化(电化学)
凝聚态物理
聚合物
电场
热的
电热效应
相变
光电子学
电介质
热力学
复合材料
物理
化学
物理化学
量子力学
作者
Yang Liu,Aziguli Haibibu,Wenhan Xu,Zhubing Han,Qing Wang
标识
DOI:10.1002/adfm.202000648
摘要
Abstract Hysteresis phenomena, including both electrical and thermal types, are essential to ferroelectric materials. The former, known as polarization‐electric field hysteresis, has been intensively studied in a wide range of ferroelectric materials. However, relevant experimental evidence on thermal hysteresis remains limited, especially in ferroelectric polymers, even though thermal hysteresis is crucial to the caloric effect, which is usually the largest near the phase transition. Here, the thermal hysteresis behavior in ferroelectric polymers is studied in terms of temperature‐dependent polarization upon heating and cooling. In contrast to common belief, a negative thermal hysteresis is observed in relaxor ferroelectric polymers, which is probably due to local stabilization of ferroelectric distortion induced by electric field. Using the polymer blend as a platform, it is further shown that the negative thermal hysteresis arises at the disappearance of long‐range ferroelectric distortion and the thermal hysteresis behavior may be effectively controlled through the blend approach. This study not only provides deeper insights into electrocaloric effect in ferroelectric polymers but also offers an approach to study the critical phenomenon in a ferroelectric system.
科研通智能强力驱动
Strongly Powered by AbleSci AI