向量空间
标量(数学)
局部凸拓扑向量空间
数学
纯数学
标量乘法
维数(图论)
拓扑张量积
代数数
域代数上的
基础(线性代数)
独立性(概率论)
班级(哲学)
计算机科学
数学分析
功能分析
拓扑空间
人工智能
几何学
生物化学
化学
统计
基因
作者
Stephen Andrilli,David Hecker
出处
期刊:Elsevier eBooks
[Elsevier]
日期:2016-01-01
卷期号:: 213-317
被引量:5
标识
DOI:10.1016/b978-0-12-800853-9.00004-9
摘要
In this chapter, we define vector spaces to be algebraic structures with operations having properties similar to those of addition and scalar multiplication on Rn. We then establish many important concepts relating to vector spaces, including span, linear independence, bases, dimension, and coordinatization with respect to a basis. Because we are studying vector spaces as a class, this chapter is more abstract than previous chapters. But the advantage of working in this more general setting is that we generate theorems that apply to all vector spaces, not just Rn.
科研通智能强力驱动
Strongly Powered by AbleSci AI