商标
雅卡索引
计算机科学
人工智能
机器学习
余弦相似度
人工神经网络
相似性(几何)
支持向量机
集合(抽象数据类型)
鉴定(生物学)
数据挖掘
模式识别(心理学)
植物
图像(数学)
生物
程序设计语言
操作系统
作者
Gitika Sharma,Sumit Sharma,Anu G. Aggarwal
出处
期刊:Indian journal of science and technology
[Indian Society for Education and Environment]
日期:2016-11-30
卷期号:9 (44)
标识
DOI:10.17485/ijst/2016/v9i44/105086
摘要
The objective of this paper is identification and analysis of the prevention policies of trademark infraction and challenges to find similarity between trademarks. Additionally, this paper proposed an approach to enhance semantic retrieval system of conceptually similar trademarks using algorithms of machine learning like Naive Bayes (NB), Artificial Neural Network (ANN) and Support Vector Machine (SVM). Similarity of trademarks is calculated using Tversky index, Cosine similarity, Jaccard coefficient etc. The performance of classification algorithms are compared on the parameter like accuracy on a same set of trademarks representing real trademark infraction cases. The proposed approach is the first step to automate the process of finding conceptually similar trademarks. Keywords: Accuracy, Machine Learning, Semantic Retrieval, Similarity, Trademark, Trademark Infraction
科研通智能强力驱动
Strongly Powered by AbleSci AI