Review article: Deep learning for potential landslide identification: data, models, applications, challenges, and opportunities

山崩 深度学习 遥感 卫星图像 鉴定(生物学) 人工智能 地质学 数据科学 领域(数学) 自然灾害 卫星 光学(聚焦) 计算机科学 地图学 钥匙(锁) 气候变化
作者
Pan Jiang,Zhengjing Ma,Gang Mei
出处
期刊:Natural Hazards and Earth System Sciences [Copernicus Publications]
卷期号:26 (1): 487-529 被引量:1
标识
DOI:10.5194/nhess-26-487-2026
摘要

Abstract. As global climate change and human activities escalate, the frequency and severity of landslide hazards have been increasing. Early identification, as an important prerequisite for monitoring, evaluation, and prevention, has become increasingly critical. Deep learning, as a powerful tool for data interpretation, has demonstrated remarkable potential in advancing landslide identification, particularly through the automated analysis of remote sensing, geological, and topographic data. This review systematically examines and synthesizes over 400 studies, with a primary focus on literature from the last six years (2020–2025), alongside key foundational works. It provides a comprehensive overview of recent advancements in the utilization of deep learning for potential landslide identification. First, the sources and characteristics of landslide-related data are summarized, including satellite observation data, airborne remote sensing data, and ground-based observation data. Next, commonly used deep learning models are classified based on their roles in potential landslide identification, such as image analysis and time series analysis. Then, the role of deep learning in identifying rainfall-induced landslides, earthquake-induced landslides, human activity-induced landslides, and multi-factor-induced landslides is summarized. Although deep learning has achieved considerable success in landslide identification, it still faces several challenges, including data imbalance, limited model generalization, and the inherent complexity of landslide mechanisms. Finally, future research directions in this field are discussed. It is suggested that integrating knowledge-driven and data-driven approaches for potential landslide identification will further enhance the applicability of deep learning, offering broad prospects for future research and practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
yangyouling发布了新的文献求助10
2秒前
在水一方应助kangk采纳,获得10
2秒前
2秒前
3秒前
cyrus完成签到,获得积分10
3秒前
3秒前
4秒前
笑点低的碧琴完成签到,获得积分10
5秒前
Akim应助yue957采纳,获得30
5秒前
xzw发布了新的文献求助10
5秒前
vistabasicu发布了新的文献求助10
6秒前
yangyouling完成签到,获得积分10
6秒前
科研通AI6.1应助zisle采纳,获得10
7秒前
cyrus发布了新的文献求助10
7秒前
orixero应助komorebi采纳,获得10
7秒前
8秒前
杏杏发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
hky完成签到 ,获得积分10
9秒前
10秒前
Owen应助张津浩采纳,获得10
11秒前
13秒前
15秒前
龙大王完成签到 ,获得积分10
15秒前
夕阳的刻痕完成签到,获得积分10
15秒前
科研通AI6.1应助huangxq采纳,获得10
16秒前
桐桐应助ccmxigua采纳,获得10
16秒前
smm发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助50
16秒前
一一发布了新的文献求助10
17秒前
TaoTao发布了新的文献求助10
20秒前
21秒前
21秒前
宫鹏涛发布了新的文献求助10
22秒前
22秒前
李健应助杏杏采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323