波前
失真(音乐)
计算机科学
斑点图案
自适应光学
相位畸变
变形镜
光学
人工神经网络
传输(电信)
补偿(心理学)
波前传感器
人工智能
计算机视觉
联轴节(管道)
非线性失真
数据传输
自由空间光通信
全息术
电子工程
信号处理
忠诚
数字全息术
振幅畸变
领域(数学)
作者
Yin‐Jie Lu,Fang‐Xiang Wang,Wei Chen,Qianqian Lü,Hai‐Yang Fu,Z. Wang,Guo‐wei Zhang,Shuang Wang,Zhen‐Qiang Yin,Zheng Zhou,Guang‐Can Guo,Zheng‐Fu Han
标识
DOI:10.1002/lpor.202501641
摘要
ABSTRACT Rapidly varying wavefront distortions impose a critical challenge to free‐space optical communication and in vivo imaging, which highlights the urgency of real‐time and high‐fidelity wavefront compensation. Deep‐learning‐based wavefront shaping offers a powerful tool to alleviate wavefront distortion. In this work, single‐shot‐based wavefront distortion recognition and compensation are realized by developing a retrieval neural network with digital twin generated data. The network can simultaneously predict the incoming distortions with speckles of the current frame. In a dynamic distortion channel, the wavefront transmission fidelity is significantly improved from 0.14 to 0.76 and the single‐mode‐fiber coupling efficiency of the transmitted field approaches (53 ± 3)% with single‐shot compensation. This work alleviates the burden of experimental data acquisition, offers a potential real‐time distortion correction technique and paves the way for quantum communication and biological imaging in dynamic complex environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI