Panel docking of small-molecule libraries — Prospects to improve efficiency of lead compound discovery

虚拟筛选 对接(动物) 药物发现 生物信息学 计算生物学 小分子 蛋白质-配体对接 化学图书馆 化学空间 仿形(计算机编程) 铅化合物 化学数据库 计算机科学 组合化学 化学 生物 生物信息学 生物化学 医学 基因 操作系统 护理部 体外
作者
Pakornwit Sarnpitak,Prashant Mujumdar,Paul Taylor,Megan Cross,Mark J. Coster,Alain-Dominique Gorse,Mikhail Krasavin,Andreas Hofmann
出处
期刊:Biotechnology Advances [Elsevier BV]
卷期号:33 (6): 941-947 被引量:19
标识
DOI:10.1016/j.biotechadv.2015.05.006
摘要

Computational docking as a means to prioritise small molecules in drug discovery projects remains a highly popular in silico screening approach. Contemporary docking approaches without experimental parametrisation can reliably differentiate active and inactive chemotypes in a protein binding site, but the absence of a correlation between the score of a predicted binding pose and the biological activity of the molecule presents a clear limitation. Several novel or improved computational approaches have been developed in the recent past to aid in screening and profiling of small-molecule ligands for drug discovery, but also more broadly in developing conceptual relationships between different protein targets by chemical probing. Among those new methodologies is a strategy known as inverse virtual screening, which involves the docking of a compound into different protein structures. In the present article, we review the different computational screening methodologies that employ docking of atomic models, and, by means of a case study, present an approach that expands the inverse virtual screening concept. By computationally screening a reasonably sized library of 1235 compounds against a panel of 48 mostly human kinases, we have been able to identify five groups of putative lead compounds with substantial diversity when compared to each other. One representative of each of the five groups was synthesised, and tested in kinase inhibition assays, yielding two compounds with micro-molar inhibition in five human kinases. This highly economic and cost-effective methodology holds great promise for drug discovery projects, especially in cases where a group of target proteins share high structural similarity in their binding sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后书雪完成签到 ,获得积分10
1秒前
1秒前
隐形冬亦完成签到,获得积分10
2秒前
3秒前
3秒前
科研助手6应助无情书萱采纳,获得10
3秒前
有机发布了新的文献求助10
3秒前
111发布了新的文献求助10
3秒前
田様应助AnasYusuf采纳,获得10
4秒前
4秒前
4秒前
like发布了新的文献求助10
5秒前
同城代打发布了新的文献求助10
5秒前
天玄发布了新的文献求助150
5秒前
火锅完成签到,获得积分10
5秒前
6秒前
番茄发布了新的文献求助30
7秒前
7秒前
风趣谷槐完成签到,获得积分10
7秒前
DDDD应助陈昭琼采纳,获得10
8秒前
科研通AI5应助直率冷之采纳,获得10
9秒前
整齐唯雪发布了新的文献求助10
9秒前
10秒前
SciGPT应助小狗同志006采纳,获得10
10秒前
12秒前
12秒前
Miranda完成签到,获得积分10
12秒前
一行白鹭完成签到,获得积分20
12秒前
14秒前
14秒前
14秒前
张世奇发布了新的文献求助10
15秒前
SpONGeBOb完成签到,获得积分10
16秒前
oceanL完成签到,获得积分10
16秒前
zzz发布了新的文献求助10
16秒前
单薄树叶完成签到,获得积分10
17秒前
赘婿应助有机采纳,获得10
17秒前
李健的小迷弟应助babulao采纳,获得10
18秒前
ZZ_star发布了新的文献求助10
19秒前
科研通AI2S应助hatoyama采纳,获得30
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800124
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10324980
捐赠科研通 3061918
什么是DOI,文献DOI怎么找? 1680596
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763509