Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface

接触带电 材料科学 光电子学 薄膜 数码产品 纳米技术 平面的 纳米线 静电感应 能量收集 表面能 电极 复合材料 电气工程 功率(物理) 摩擦电效应 计算机科学 化学 计算机图形学(图像) 工程类 物理 物理化学 量子力学
作者
Guang Zhu,Yuanjie Su,Peng Bai,Jun Chen,Qingshen Jing,Weiqing Yang,Zhong Lin Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:8 (6): 6031-6037 被引量:524
标识
DOI:10.1021/nn5012732
摘要

Energy harvesting from ambient water motions is a desirable but underexplored solution to on-site energy demand for self-powered electronics. Here we report a liquid–solid electrification-enabled generator based on a fluorinated ethylene propylene thin film, below which an array of electrodes are fabricated. The surface of the thin film is charged first due to the water–solid contact electrification. Aligned nanowires created on the thin film make it hydrophobic and also increase the surface area. Then the asymmetric screening to the surface charges by the waving water during emerging and submerging processes causes the free electrons on the electrodes to flow through an external load, resulting in power generation. The generator produces sufficient output power for driving an array of small electronics during direct interaction with water bodies, including surface waves and falling drops. Polymer-nanowire-based surface modification increases the contact area at the liquid–solid interface, leading to enhanced surface charging density and thus electric output at an efficiency of 7.7%. Our planar-structured generator features an all-in-one design without separate and movable components for capturing and transmitting mechanical energy. It has extremely lightweight and small volume, making it a portable, flexible, and convenient power solution that can be applied on the ocean/river surface, at coastal/offshore areas, and even in rainy places. Considering the demonstrated scalability, it can also be possibly used in large-scale energy generation if layers of planar sheets are connected into a network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
冯11发布了新的文献求助10
2秒前
科研的猫发布了新的文献求助10
2秒前
小星星完成签到,获得积分10
2秒前
无理发布了新的文献求助10
3秒前
3秒前
迷人的大神完成签到,获得积分20
3秒前
天天向上完成签到,获得积分10
4秒前
嘟瑞发布了新的文献求助10
4秒前
4秒前
qiuy发布了新的文献求助10
5秒前
5秒前
友好的钢笔完成签到,获得积分10
6秒前
CodeCraft应助捉一只小鱼采纳,获得10
6秒前
中恐完成签到,获得积分0
7秒前
镜子应助阿星采纳,获得10
8秒前
9秒前
SciGPT应助pocha_cloud采纳,获得10
9秒前
MchemG应助号6666采纳,获得30
9秒前
喵呜发布了新的文献求助10
9秒前
大个应助鲸落采纳,获得10
11秒前
12秒前
DE2022发布了新的文献求助10
12秒前
快乐的海亦完成签到,获得积分10
12秒前
wlqydyxf发布了新的文献求助10
13秒前
13秒前
13秒前
小旋风完成签到,获得积分10
14秒前
14秒前
14秒前
wanci应助倩倩采纳,获得10
14秒前
喵呜完成签到,获得积分10
15秒前
15秒前
FashionBoy应助研友_8QxKrZ采纳,获得10
15秒前
15秒前
15秒前
斯文败类应助只为更出色采纳,获得10
15秒前
汉堡包应助Kevin采纳,获得10
16秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870468
求助须知:如何正确求助?哪些是违规求助? 3412681
关于积分的说明 10680469
捐赠科研通 3137091
什么是DOI,文献DOI怎么找? 1730598
邀请新用户注册赠送积分活动 834196
科研通“疑难数据库(出版商)”最低求助积分说明 781073