Enabling Scalable Routing in Software-Defined Networks With Deep Reinforcement Learning on Critical Nodes

计算机科学 分布式计算 计算机网络 静态路由 分层路由 路由域 基于策略的路由 强化学习 链路状态路由协议 网络拓扑 动态源路由 路由协议 路由表 布线(电子设计自动化) 人工智能
作者
Penghao Sun,Zehua Guo,Junfei Li,Yang Xu,Julong Lan,Yuxiang Hu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 629-640 被引量:39
标识
DOI:10.1109/tnet.2021.3126933
摘要

Traditional routing schemes usually use fixed models for routing policies and thus are not good at handling complicated and dynamic traffic, leading to performance degradation (e.g., poor quality of service). Emerging Deep Reinforcement Learning (DRL) coupled with Software-Defined Networking (SDN) provides new opportunities to improve network performance with automatic traffic analysis and policy generation. However, existing DRL-based routing solutions usually rely on all node information to make routing decisions for the network and hence are both hard to converge in large networks and vulnerable to topology changes. In this paper, we propose ScaleDeep, a scalable DRL-based routing scheme for SDN, which improves the routing performance and is resilient to topology changes. Essentially, ScaleDeep takes advantage of partial control on network nodes and DRL. We select a set of critical nodes from a network as driver nodes, which can simulate the entire network operation, based on the control theory. By observing the traffic variation on the driver nodes, DRL dynamically adjusts some link weights for a weighted shortest path algorithm to change the routing paths and improve the routing performance. Limiting the control on driver nodes improves the convergence ability of DRL and reduces the dependency of the DRL agent on the fixed network topology. To validate the performance of ScaleDeep, we conduct packet-level simulations on different topologies. The results show that ScaleDeep outperforms existing DRL-based schemes by reducing the average flow completion time by up to 36% and exhibiting better robustness against minor topology changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李姝霏发布了新的文献求助10
刚刚
DiJia完成签到 ,获得积分10
1秒前
lhr完成签到 ,获得积分10
1秒前
丘比特应助yue采纳,获得10
2秒前
聪明爱迪生完成签到,获得积分10
2秒前
儒雅的冷松完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
李健的小迷弟应助登山人采纳,获得10
3秒前
小二郎应助赵婧采纳,获得10
3秒前
NexusExplorer应助perseverance采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
辣小扬完成签到,获得积分10
5秒前
5秒前
whatever应助林代峰采纳,获得20
6秒前
123完成签到,获得积分10
6秒前
阳枝甘禄发布了新的文献求助10
7秒前
7秒前
fighting完成签到,获得积分10
7秒前
Young发布了新的文献求助10
7秒前
Amber完成签到,获得积分10
8秒前
re发布了新的文献求助10
8秒前
8秒前
辣小扬发布了新的文献求助10
8秒前
水上书发布了新的文献求助10
8秒前
9秒前
丘比特应助jiangwei采纳,获得10
9秒前
南栀发布了新的文献求助10
9秒前
神光发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
12秒前
今后应助dongdongguai采纳,获得10
12秒前
清秀书桃发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621