已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fully-channel regional attention network for disease-location recognition with tongue images

计算机科学 人工智能 卷积神经网络 联营 舌头 模式识别(心理学) 频道(广播) 深度学习 计算机视觉 医学 计算机网络 病理
作者
Yang Hu,Guihua Wen,Mingnan Luo,Pei Yang,Dan Dai,Zhiwen Yu,Changjun Wang,Wendy Hall
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:118: 102110-102110 被引量:29
标识
DOI:10.1016/j.artmed.2021.102110
摘要

Using the deep learning model to realize tongue image-based disease location recognition and focus on solving two problems: 1. The ability of the general convolution network to model detailed regional tongue features is weak; 2. Ignoring the group relationship between convolution channels, which caused the high redundancy of the model. To enhance the convolutional neural networks. In this paper, a stochastic region pooling method is proposed to gain detailed regional features. Also, an inner-imaging channel relationship modeling method is proposed to model multi-region relations on all channels. Moreover, we combine it with the spatial attention mechanism. The tongue image dataset with the clinical disease-location label is established. Abundant experiments are carried out on it. The experimental results show that the proposed method can effectively model the regional details of tongue image and improve the performance of disease location recognition. In this paper, we construct the tongue image dataset with disease-location labels to mine the relationship between tongue images and disease locations. A novel fully-channel regional attention network is proposed to model the local detail tongue features and improve the modeling efficiency. The applications of deep learning in tongue image disease-location recognition and the proposed innovative models have guiding significance for other assistant diagnostic tasks. The proposed model provides an example of efficient modeling of detailed tongue features, which is of great guiding significance for other auxiliary diagnosis applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z_BOY完成签到 ,获得积分10
2秒前
3秒前
cindy完成签到,获得积分10
5秒前
9秒前
科研通AI6应助一天发十篇采纳,获得10
11秒前
13秒前
Sssssss完成签到 ,获得积分10
13秒前
aaaaarfv发布了新的文献求助10
13秒前
14秒前
14秒前
victor发布了新的文献求助10
18秒前
sun发布了新的文献求助10
18秒前
yeah发布了新的文献求助10
19秒前
qsq完成签到 ,获得积分10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
隐形初雪完成签到 ,获得积分10
19秒前
tuanzi233应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
20秒前
21秒前
23秒前
24秒前
orixero应助fanfan采纳,获得10
24秒前
穆雨完成签到 ,获得积分10
24秒前
Myungsiky发布了新的文献求助30
24秒前
天天快乐应助YoMiii采纳,获得10
24秒前
何1完成签到 ,获得积分10
25秒前
么么叽发布了新的文献求助10
27秒前
庞初南发布了新的文献求助10
29秒前
LIUDEHUA完成签到 ,获得积分10
31秒前
顾矜应助yeah采纳,获得10
32秒前
33秒前
CCsouljump完成签到 ,获得积分10
33秒前
lyy完成签到 ,获得积分10
34秒前
Orange应助JAsoli采纳,获得20
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539428
求助须知:如何正确求助?哪些是违规求助? 3973568
关于积分的说明 12309227
捐赠科研通 3640554
什么是DOI,文献DOI怎么找? 2004531
邀请新用户注册赠送积分活动 1039933
科研通“疑难数据库(出版商)”最低求助积分说明 929113