Mapping trees along urban street networks with deep learning and street-level imagery

基本事实 地理定位 激光雷达 地理标记 计算机科学 卫星图像 树(集合论) 卷积神经网络 城市规划 街道网 遥感 地图学 地理 人工智能 城市林业 运输工程 数学 数学分析 生态学 环境规划 万维网 工程类 生物
作者
Stefanie Lumnitz,Tahia Devisscher,Jerome Mayaud,Valentina Radić,Nicholas C. Coops,Verena C. Griess
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:175: 144-157 被引量:84
标识
DOI:10.1016/j.isprsjprs.2021.01.016
摘要

Planning and managing urban forests for livable cities remains a challenge worldwide owing to sparse information on the spatial distribution, structure and composition of urban trees and forests. National and municipal sources of tree inventory remain limited due to a lack of detailed, consistent and frequent inventory assessments. Despite advancements in research on the automation of urban tree mapping using Light Detection and Ranging (LiDAR) or high-resolution satellite imagery, in practice most municipalities still perform labor-intensive field surveys to collect and update tree inventories. We present a robust, affordable and rapid method for creating tree inventories in any urban region where sufficient street-level imagery is readily available. Our approach is novel in that we use a Mask Regional Convolutional Neural Network (Mask R-CNN) to detect and locate separate tree instances from street-level imagery, thereby successfully creating shape masks around unique fuzzy urban objects like trees. The novelty of this method is enhanced by using monocular depth estimation and triangulation to estimate precise tree location, relying only on photographs and images taken from the street. Experiments across four cities show that our method is transferable to different image sources (Google Street View, Mapillary) and urban ecosystems. We successfully detect >70% of all public and private trees recorded in a ground-truth campaign across Metro Vancouver. The accuracy of geolocation is also promising. We automatically locate public and private trees with a mean error in the absolute position ranging from 4 to 6 m, which is comparable to ground-truth measurements in conventional manual urban tree inventory campaigns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明帅发布了新的文献求助10
刚刚
大模型应助Sun采纳,获得10
1秒前
1秒前
xxx完成签到 ,获得积分10
1秒前
小兔叽完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
chao完成签到,获得积分10
3秒前
一枚巧克力完成签到 ,获得积分10
3秒前
小星星668完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Acane应助蒜蒜采纳,获得20
6秒前
6秒前
76完成签到,获得积分10
8秒前
9秒前
乐乐应助好好好采纳,获得10
10秒前
Jasper应助科研牛人采纳,获得10
10秒前
11秒前
BaooooooMao完成签到,获得积分10
11秒前
无花果应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
冰魂应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
冰魂应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
13秒前
温柔迎海完成签到,获得积分20
13秒前
13秒前
四夕水窖完成签到,获得积分10
14秒前
FK7完成签到,获得积分10
15秒前
樱sky发布了新的文献求助10
16秒前
喵喵666完成签到,获得积分10
18秒前
poly完成签到,获得积分10
19秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866728
求助须知:如何正确求助?哪些是违规求助? 3409146
关于积分的说明 10661844
捐赠科研通 3133274
什么是DOI,文献DOI怎么找? 1728122
邀请新用户注册赠送积分活动 832684
科研通“疑难数据库(出版商)”最低求助积分说明 780393