Dynamic Hand Gesture Recognition Based on Signals From Specialized Data Glove and Deep Learning Algorithms

卷积神经网络 计算机科学 有线手套 手势 手势识别 人工智能 残余物 深度学习 卷积(计算机科学) 手语 模式识别(心理学) 可穿戴计算机 语音识别 算法 计算机视觉 人工神经网络 哲学 嵌入式系统 语言学
作者
Yongfeng Dong,Jielong Liu,Wenjie Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:60
标识
DOI:10.1109/tim.2021.3077967
摘要

Gesture recognition as a natural, convenient and recognizable way has been received more and more attention on human-machine interaction (HMI) recently. However, visual-based gesture recognition methods are often restricted by environments and classical wearable device-based strategies are suffered from relatively low accuracy or the complicated structures. In this study, we first design a low-cost and efficient data glove with simple hardware structure to capture finger movement and bending simultaneously. Second, a novel dynamic hand gesture recognition algorithm (DGDL-GR) is proposed to recognize human dynamic sign language, in which a fusion model of convolutional neural network (fCNN) and generic temporal convolutional network (TCN) is fully utilized. The fCNN (fusion of 1-D CNN and 2-D CNN) is proposed to extract time-domain features of finger resistance movement and spatial domain features of finger resistance bending simultaneously. Moreover, due to the superiorities of TCN in sequence modeling task, this work proposes a novel hand gesture recognition method based on the TCN, which includes causal convolution, dilation convolution, and a residual network with appropriate layers. Both long- and short-time dependencies of the hand gesture features are deeply mined and classified in the end. Results of extensive experiments have demonstrated that the proposed DGDL-GR algorithm outperforms many state-of-the-art algorithms on the measure of accuracy, F1 score, precision score, and recall score with the real-world dataset. Moreover, the number of residual blocks and some key hyperparameters of the proposed DGDL-GR algorithm has been studied thoroughly in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
efren1806完成签到,获得积分10
2秒前
科研通AI5应助写论文采纳,获得10
3秒前
Hindiii完成签到,获得积分10
3秒前
所所应助Lea采纳,获得10
3秒前
ASHES完成签到,获得积分10
4秒前
Clarenceed发布了新的文献求助10
4秒前
皓轩完成签到 ,获得积分10
11秒前
研友_xnE65Z完成签到 ,获得积分10
12秒前
12秒前
1213完成签到 ,获得积分10
16秒前
17秒前
钱烨华完成签到,获得积分10
19秒前
费小曼完成签到,获得积分10
19秒前
从容谷菱完成签到,获得积分10
21秒前
22秒前
24秒前
24秒前
just do it完成签到,获得积分10
28秒前
勤恳白云完成签到,获得积分10
32秒前
cheng完成签到,获得积分10
34秒前
iNk应助666采纳,获得10
39秒前
39秒前
41秒前
欢呼的茗茗完成签到 ,获得积分10
41秒前
41秒前
Akim应助卢卢卢采纳,获得10
42秒前
拾光完成签到 ,获得积分10
43秒前
复杂念梦发布了新的文献求助10
44秒前
keke完成签到,获得积分10
44秒前
科研狗发布了新的文献求助10
45秒前
科研狗完成签到,获得积分10
52秒前
不能当饭吃完成签到,获得积分10
52秒前
53秒前
无花果应助淡然胡萝卜采纳,获得10
53秒前
55秒前
Arrow完成签到,获得积分10
57秒前
宇智波白哉完成签到,获得积分10
58秒前
渡己完成签到 ,获得积分10
58秒前
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779404
求助须知:如何正确求助?哪些是违规求助? 3324954
关于积分的说明 10220585
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522