AI-based pathology predicts origins for cancers of unknown primary

一致性 鉴别诊断 医学 医学诊断 病理 数字化病理学 人工智能 计算机科学 生物 计算生物学 生物信息学
作者
Ming Y. Lu,Tiffany Chen,Drew F. K. Williamson,Melissa Zhao,Maha Shady,Jana Lipková,Faisal Mahmood
出处
期刊:Nature [Springer Nature]
卷期号:594 (7861): 106-110 被引量:239
标识
DOI:10.1038/s41586-021-03512-4
摘要

Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined. This poses a significant challenge since modern therapeutics such as chemotherapy regimen and immune checkpoint inhibitors are specific to the primary tumor. Recent work has focused on using genomics and transcriptomics for identification of tumor origins. However, genomic testing is not conducted for every patient and lacks clinical penetration in low resource settings. Herein, to overcome these challenges, we present a deep learning-based computational pathology algorithm-TOAD-that can provide a differential diagnosis for CUP using routinely acquired histology slides. We used 17,486 gigapixel whole slide images with known primaries spread over 18 common origins to train a multi-task deep model to simultaneously identify the tumor as primary or metastatic and predict its site of origin. We tested our model on an internal test set of 4,932 cases with known primaries and achieved a top-1 accuracy of 0.84, a top-3 accuracy of 0.94 while on our external test set of 662 cases from 202 different hospitals, it achieved a top-1 and top-3 accuracy of 0.79 and 0.93 respectively. We further curated a dataset of 717 CUP cases from 151 different medical centers and identified a subset of 290 cases for which a differential diagnosis was assigned. Our model predictions resulted in concordance for 50% of cases (\k{appa}=0.4 when adjusted for agreement by chance) and a top-3 agreement of 75%. Our proposed method can be used as an assistive tool to assign differential diagnosis to complicated metastatic and CUP cases and could be used in conjunction with or in lieu of immunohistochemical analysis and extensive diagnostic work-ups to reduce the occurrence of CUP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归海老四发布了新的文献求助10
刚刚
白金发布了新的文献求助10
刚刚
hello发布了新的文献求助200
刚刚
刚刚
汉堡包应助小远采纳,获得10
1秒前
momo完成签到,获得积分10
1秒前
bkagyin应助淡然冰之采纳,获得10
1秒前
Wey发布了新的文献求助10
1秒前
1秒前
2秒前
curryLiyp完成签到,获得积分10
2秒前
那家伙真懒完成签到,获得积分20
2秒前
2秒前
小白完成签到,获得积分10
2秒前
2秒前
3秒前
麦兜完成签到,获得积分10
3秒前
3秒前
上瘾完成签到,获得积分10
3秒前
uon发布了新的文献求助10
3秒前
4秒前
4秒前
垚106发布了新的文献求助10
5秒前
Frank应助chenshuqi采纳,获得10
5秒前
需要论文应助chenshuqi采纳,获得10
5秒前
aikanwenxian发布了新的文献求助10
5秒前
粗心的向真完成签到,获得积分10
5秒前
脑洞疼应助雪雪啊采纳,获得10
5秒前
5秒前
口口山石发布了新的文献求助10
5秒前
科研通AI6应助张超超采纳,获得10
6秒前
共享精神应助123采纳,获得10
6秒前
英姑应助念念采纳,获得10
6秒前
Ava应助77采纳,获得10
6秒前
ddd发布了新的文献求助10
6秒前
wsy完成签到,获得积分10
7秒前
yinger1984完成签到,获得积分10
7秒前
叶成会发布了新的文献求助10
8秒前
8秒前
Yq发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410541
求助须知:如何正确求助?哪些是违规求助? 4527950
关于积分的说明 14113813
捐赠科研通 4442609
什么是DOI,文献DOI怎么找? 2437990
邀请新用户注册赠送积分活动 1430032
关于科研通互助平台的介绍 1407965