亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-based pathology predicts origins for cancers of unknown primary

一致性 鉴别诊断 医学 医学诊断 病理 数字化病理学 人工智能 计算机科学 生物 计算生物学 生物信息学
作者
Ming Y. Lu,Tiffany Chen,Drew F. K. Williamson,Melissa Zhao,Maha Shady,Jana Lipková,Faisal Mahmood
出处
期刊:Nature [Springer Nature]
卷期号:594 (7861): 106-110 被引量:239
标识
DOI:10.1038/s41586-021-03512-4
摘要

Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined. This poses a significant challenge since modern therapeutics such as chemotherapy regimen and immune checkpoint inhibitors are specific to the primary tumor. Recent work has focused on using genomics and transcriptomics for identification of tumor origins. However, genomic testing is not conducted for every patient and lacks clinical penetration in low resource settings. Herein, to overcome these challenges, we present a deep learning-based computational pathology algorithm-TOAD-that can provide a differential diagnosis for CUP using routinely acquired histology slides. We used 17,486 gigapixel whole slide images with known primaries spread over 18 common origins to train a multi-task deep model to simultaneously identify the tumor as primary or metastatic and predict its site of origin. We tested our model on an internal test set of 4,932 cases with known primaries and achieved a top-1 accuracy of 0.84, a top-3 accuracy of 0.94 while on our external test set of 662 cases from 202 different hospitals, it achieved a top-1 and top-3 accuracy of 0.79 and 0.93 respectively. We further curated a dataset of 717 CUP cases from 151 different medical centers and identified a subset of 290 cases for which a differential diagnosis was assigned. Our model predictions resulted in concordance for 50% of cases (\k{appa}=0.4 when adjusted for agreement by chance) and a top-3 agreement of 75%. Our proposed method can be used as an assistive tool to assign differential diagnosis to complicated metastatic and CUP cases and could be used in conjunction with or in lieu of immunohistochemical analysis and extensive diagnostic work-ups to reduce the occurrence of CUP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
酷波er应助super采纳,获得10
4秒前
安安发布了新的文献求助10
7秒前
14秒前
iman完成签到,获得积分10
15秒前
15秒前
yjc666发布了新的文献求助10
20秒前
super发布了新的文献求助10
21秒前
26秒前
trophozoite完成签到 ,获得积分10
30秒前
yjc666完成签到,获得积分20
33秒前
古日方原完成签到,获得积分10
34秒前
顺心醉柳完成签到 ,获得积分10
41秒前
57秒前
传奇3应助DX120210165采纳,获得10
59秒前
123发布了新的文献求助10
1分钟前
科目三应助青栞采纳,获得10
1分钟前
1分钟前
1分钟前
DX120210165发布了新的文献求助10
1分钟前
2分钟前
2分钟前
冷傲的薯片完成签到,获得积分10
2分钟前
2分钟前
Tim888完成签到,获得积分10
2分钟前
ZanE完成签到,获得积分10
2分钟前
2分钟前
2分钟前
青栞完成签到,获得积分10
3分钟前
3分钟前
希望天下0贩的0应助kosangel采纳,获得10
3分钟前
青栞发布了新的文献求助10
3分钟前
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
kosangel发布了新的文献求助10
3分钟前
Tonson应助fly采纳,获得10
3分钟前
3分钟前
阿瓜师傅发布了新的文献求助10
3分钟前
郝誉发布了新的文献求助10
3分钟前
fly完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476343
求助须知:如何正确求助?哪些是违规求助? 4578021
关于积分的说明 14363359
捐赠科研通 4505924
什么是DOI,文献DOI怎么找? 2468940
邀请新用户注册赠送积分活动 1456521
关于科研通互助平台的介绍 1430207