Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients

2019年冠状病毒病(COVID-19) 医学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 生命体征 2019-20冠状病毒爆发 呼吸监测 呼吸系统 重症监护医学 急诊医学 病毒学 病理 放射科 内科学 爆发 传染病(医学专业) 疾病
作者
Xiaoyue Ni,Wei Ouyang,Hyoyoung Jeong,Jin‐Tae Kim,Andreas Tzavelis,Ali Mirzazadeh,Changsheng Wu,Jong Yoon Lee,Matthew W. Keller,Chaithanya K. Mummidisetty,Manish Patel,Nicholas Shawen,Le Huang,Hope Chen,Sowmya Ravi,Jan‐Kai Chang,KunHyuck Lee,Yixin Wu,Ferrona Lie,Youn J. Kang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:118 (19) 被引量:80
标识
DOI:10.1073/pnas.2026610118
摘要

Capabilities in continuous monitoring of key physiological parameters of disease have never been more important than in the context of the global COVID-19 pandemic. Soft, skin-mounted electronics that incorporate high-bandwidth, miniaturized motion sensors enable digital, wireless measurements of mechanoacoustic (MA) signatures of both core vital signs (heart rate, respiratory rate, and temperature) and underexplored biomarkers (coughing count) with high fidelity and immunity to ambient noises. This paper summarizes an effort that integrates such MA sensors with a cloud data infrastructure and a set of analytics approaches based on digital filtering and convolutional neural networks for monitoring of COVID-19 infections in sick and healthy individuals in the hospital and the home. Unique features are in quantitative measurements of coughing and other vocal events, as indicators of both disease and infectiousness. Systematic imaging studies demonstrate correlations between the time and intensity of coughing, speaking, and laughing and the total droplet production, as an approximate indicator of the probability for disease spread. The sensors, deployed on COVID-19 patients along with healthy controls in both inpatient and home settings, record coughing frequency and intensity continuously, along with a collection of other biometrics. The results indicate a decaying trend of coughing frequency and intensity through the course of disease recovery, but with wide variations across patient populations. The methodology creates opportunities to study patterns in biometrics across individuals and among different demographic groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鸭我就这样完成签到,获得积分10
1秒前
黄婷萱发布了新的文献求助10
1秒前
1秒前
浮游应助7890733采纳,获得10
2秒前
4秒前
5秒前
XIGUA完成签到,获得积分10
5秒前
健康发布了新的文献求助10
5秒前
顾矜应助灿星采纳,获得10
6秒前
淡淡桐发布了新的文献求助10
6秒前
lrx完成签到,获得积分10
6秒前
Tina完成签到,获得积分10
7秒前
tay完成签到,获得积分10
11秒前
玉耀完成签到,获得积分10
11秒前
岳阳张震岳完成签到,获得积分10
12秒前
12秒前
xihuang发布了新的文献求助10
12秒前
小嘿嘿完成签到,获得积分10
13秒前
lyy完成签到,获得积分10
13秒前
13秒前
lilili应助月蚀六花采纳,获得10
13秒前
nuul完成签到,获得积分10
14秒前
14秒前
wangzhenghua完成签到 ,获得积分10
15秒前
苏瑾完成签到,获得积分10
15秒前
无极微光应助慧慧采纳,获得20
17秒前
17秒前
Julie完成签到,获得积分10
18秒前
Akim应助nn采纳,获得10
19秒前
DXY发布了新的文献求助10
19秒前
科研通AI5应助淡淡桐采纳,获得10
20秒前
博闻发布了新的文献求助10
20秒前
21秒前
by完成签到,获得积分10
23秒前
外侧人发布了新的文献求助30
24秒前
24秒前
Julie发布了新的文献求助10
24秒前
黄婷萱完成签到,获得积分10
24秒前
不安青牛应助科研通管家采纳,获得10
25秒前
Yuzi_YU应助NaCl采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061155
求助须知:如何正确求助?哪些是违规求助? 4285295
关于积分的说明 13353883
捐赠科研通 4103069
什么是DOI,文献DOI怎么找? 2246464
邀请新用户注册赠送积分活动 1252142
关于科研通互助平台的介绍 1182988