亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning‐Based Integration of Prognostic Magnetic Resonance Imaging Biomarkers for Myometrial Invasion Stratification in Endometrial Cancer

磁共振成像 子宫内膜癌 危险分层 医学 放射科 肿瘤科 癌症 内科学
作者
Alejandro Rodríguez,Alberto Alegre,Víctor Lago,José Miguel Carot Sierra,Amadeo Ten‐Esteve,Guillermina Montoliú,Santiago Domingo,Ángel Alberich‐Bayarri,Luis Martí‐Bonmatí
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (3): 987-995 被引量:44
标识
DOI:10.1002/jmri.27625
摘要

Background Estimation of the depth of myometrial invasion (MI) in endometrial cancer is pivotal in the preoperatively staging. Magnetic resonance (MR) reports suffer from human subjectivity. Multiparametric MR imaging radiomics and parameters may improve the diagnostic accuracy. Purpose To discriminate between patients with MI ≥ 50% using a machine learning‐based model combining texture features and descriptors from preoperatively MR images. Study Type Retrospective. Population One hundred forty‐three women with endometrial cancer were included. The series was split into training ( n = 107, 46 with MI ≥ 50%) and test ( n = 36, 16 with MI ≥ 50%) cohorts. Field Strength/Sequences Fast spin echo T2‐weighted (T2W), diffusion‐weighted (DW), and T1‐weighted gradient echo dynamic contrast‐enhanced (DCE) sequences were obtained at 1.5 or 3 T magnets. Assessment Tumors were manually segmented slice‐by‐slice. Texture metrics were calculated from T2W and ADC map images. Also, the apparent diffusion coefficient (ADC), wash‐in slope, wash‐out slope, initial area under the curve at 60 sec and at 90 sec, initial slope, time to peak and peak amplitude maps from DCE sequences were obtained as parameters. MR diagnostic models using single‐sequence features and a combination of features and parameters from the three sequences were built to estimate MI using Adaboost methods. The pathological depth of MI was used as gold standard. Statistical Test Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, accuracy, positive predictive value, negative predictive value, precision and recall were computed to assess the Adaboost models performance. Results The diagnostic model based on the features and parameters combination showed the best performance to depict patient with MI ≥ 50% in the test cohort (accuracy = 86.1% and AUROC = 87.1%). The rest of diagnostic models showed a worse accuracy (accuracy = 41.67%–63.89% and AUROC = 41.43%–63.13%). Data Conclusion The model combining the texture features from T2W and ADC map images with the semi‐quantitative parameters from DW and DCE series allow the preoperative estimation of myometrial invasion. Evidence Level 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
11秒前
14秒前
热情依白应助读书的时候采纳,获得10
42秒前
54秒前
1分钟前
1分钟前
夜休2024完成签到 ,获得积分10
1分钟前
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
灵巧延恶发布了新的文献求助10
1分钟前
科研通AI2S应助读书的时候采纳,获得10
1分钟前
1分钟前
1分钟前
热情依白应助读书的时候采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
惠若烟发布了新的文献求助10
1分钟前
惠若烟完成签到,获得积分10
1分钟前
2分钟前
actor2006完成签到,获得积分10
2分钟前
vvnm发布了新的文献求助10
2分钟前
科研通AI2S应助读书的时候采纳,获得10
2分钟前
2分钟前
Kent完成签到 ,获得积分10
2分钟前
丘比特应助读书的时候采纳,获得10
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
热情依白应助读书的时候采纳,获得30
3分钟前
英姑应助饶渔采纳,获得10
3分钟前
热情依白应助读书的时候采纳,获得10
3分钟前
3分钟前
热情依白应助读书的时候采纳,获得10
4分钟前
4分钟前
belssingoo完成签到,获得积分10
4分钟前
热情依白应助读书的时候采纳,获得10
4分钟前
lilylwy完成签到 ,获得积分0
4分钟前
TXZ06完成签到,获得积分10
4分钟前
热情依白应助读书的时候采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688054
求助须知:如何正确求助?哪些是违规求助? 5063103
关于积分的说明 15193625
捐赠科研通 4846398
什么是DOI,文献DOI怎么找? 2598847
邀请新用户注册赠送积分活动 1550951
关于科研通互助平台的介绍 1509531