光催化
表面光电压
异质结
材料科学
化学计量学
化学工程
量子效率
半导体
光电子学
光谱学
纳米技术
化学
工程类
物理化学
催化作用
物理
量子力学
生物化学
作者
Erhuan Zhang,Qianhong Zhu,Junheng Huang,Jia Liu,Guoqiang Tan,Chengjun Sun,Tao Li,Shan Liu,Yuemei Li,Hongzhi Wang,Xiaodong Wan,Zhenhai Wen,Fengtao Fan,Jiatao Zhang,Katsuhiko Ariga
标识
DOI:10.1016/j.apcatb.2021.120213
摘要
The direct Z-scheme heterojunction has been recently emerging as an appealing architecture for photocatalysts design. Its efficiency depends on the interfacial and structural features of the photocatalysts. Herein, the two-dimensional ZnIn2S4 nanosheets are grown on the surface of CdS hollow cubes to construct the CdS@ZnIn2S4 hierarchical hollow photocatalysts with chemically bonded interface. The visualized measurements based on spatial-resolved surface photovoltage spectroscopy, combined with other spectroscopic and simulation investigations, clearly disclose that the CdS@ZnIn2S4 hollow cubes constitute a highly efficient direct Z-scheme system. This accounts for the stoichiometric generation of H2 and H2O2 from pure water observed for the CdS@ZnIn2S4 sulfide-only photocatalysts under visible light irradiation with an apparent quantum efficiency of 1.63 % at 400 nm. The present work demonstrates an effective protocol to achieve comprehensive insights into the charge transfer route at semiconductor heterojunction, and offers a viable way for constructing efficient sulfide-only photocatalysts for driving water splitting reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI