亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An enhanced black widow optimization algorithm for feature selection

计算机科学 水准点(测量) 局部最优 趋同(经济学) 算法 特征(语言学) 启发式 特征选择 人口 选择(遗传算法) 局部搜索(优化) 突变 数学优化 人工智能 模式识别(心理学) 数学 地理 社会学 化学 经济 人口学 哲学 基因 生物化学 经济增长 语言学 大地测量学
作者
Gang Hu,Bo Du,Xiaofeng Wang,Guo Wei
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:235: 107638-107638 被引量:156
标识
DOI:10.1016/j.knosys.2021.107638
摘要

Feature selection is an important data processing method to reduce dimension of the raw datasets while preserving the information as much as possible. In this paper, an enhanced version of Black Widow Optimization Algorithm called SDABWO is proposed to solve the feature selection problem. The Black Widow Optimization Algorithm (BWO) is a new population-based meta-heuristic algorithm inspired by the evolution process of spider population. Three main improvements were included into the BWO to overcome the shortcoming of low accuracy, slow convergence speed and being easy to fall into local optima. Firstly, a novel strategy for selecting spouses by calculating the weight of female spiders and the distance between spiders is proposed. By applying the strategy to the original algorithm, it has faster convergence speed and higher accuracy. The second improvement includes the use of mutation operator of differential evolution at mutation phase of BWO which helps the algorithm escape from the local optima. And then, three key parameters are set to adjust adaptively with the increase of iteration times. To confirm and validate the performance of the improved BWO, other 10 algorithms are used to compared with the SDABWO on 25 benchmark functions. The results show that the proposed algorithm enhances the exploitation ability, improves the convergence speed and is more stable when solving optimization problems. Furthermore, the proposed SDABWO algorithm is employed for feature selection. Twelve standard datasets from UCI repository prove that SDABWO-based method has stronger search ability in the search space of feature selection than the other five popular feature selection methods. These results confirm the capability of the proposed method simultaneously improve the classification accuracy while reducing the dimensions of the original datasets. Therefore, SDABWO-based method was found to be one of the most promising for feature selection problem over other approaches that are currently used in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓头OvQ发布了新的文献求助10
1秒前
8秒前
12秒前
Werner完成签到 ,获得积分10
12秒前
TIWOSS发布了新的文献求助10
13秒前
李娇完成签到 ,获得积分10
14秒前
科研fw完成签到 ,获得积分10
15秒前
16秒前
Nancy0818完成签到 ,获得积分10
17秒前
17秒前
dongmei发布了新的文献求助10
20秒前
小牙医完成签到,获得积分10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
26秒前
FashionBoy应助dongmei采纳,获得10
27秒前
CipherSage应助TIWOSS采纳,获得10
28秒前
神勇的归尘完成签到 ,获得积分10
35秒前
36秒前
科研通AI5应助皮代谷采纳,获得150
37秒前
37秒前
我爱看文献是假的完成签到,获得积分10
39秒前
Demi发布了新的文献求助10
40秒前
46秒前
47秒前
皮代谷发布了新的文献求助150
52秒前
TIWOSS发布了新的文献求助10
53秒前
卓头OvQ完成签到,获得积分10
56秒前
怡然银耳汤关注了科研通微信公众号
1分钟前
饺子生面包完成签到 ,获得积分10
1分钟前
完美世界应助在努力了采纳,获得10
1分钟前
今后应助TIWOSS采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
只与你发布了新的文献求助10
1分钟前
TIWOSS发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784786
求助须知:如何正确求助?哪些是违规求助? 3330050
关于积分的说明 10244053
捐赠科研通 3045345
什么是DOI,文献DOI怎么找? 1671626
邀请新用户注册赠送积分活动 800524
科研通“疑难数据库(出版商)”最低求助积分说明 759483