Multimodal Artificial Neurological Sensory–Memory System Based on Flexible Carbon Nanotube Synaptic Transistor

记忆 神经科学 计算机科学 内容寻址存储器 人工智能 突触 感觉系统 人工神经网络 心理学 认知心理学
作者
Haochuan Wan,Junyi Zhao,Li‐Wei Lo,Yunqi Cao,Nelson Sepúlveda,Chuan Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (9): 14587-14597 被引量:73
标识
DOI:10.1021/acsnano.1c04298
摘要

As the initial stage in the formation of human intelligence, the sensory–memory system plays a critical role for human being to perceive, interact, and evolve with the environment. Electronic implementation of such biological sensory–memory system empowers the development of environment-interactive artificial intelligence (AI) that can learn and evolve with diversified external information, which could potentially broaden the application of the AI technology in the field of human–computer interaction. Here, we report a multimodal artificial sensory–memory system consisting of sensors for generating biomimetic visual, auditory, tactile inputs, and flexible carbon nanotube synaptic transistor that possesses synapse-like signal processing and memorizing behaviors. The transduction of physical signals into information-containing, presynaptic action potentials and the synaptic plasticity of the transistor in response to single and long-term action potential excitations have been systematically characterized. The bioreceptor-like sensing and synapse-like memorizing behaviors have also been demonstrated. On the basis of the memory and learning characteristics of the sensory–memory system, the well-known psychological model describing human memory, the "multistore memory" model, and the classical conditioning experiment that demonstrates the associative learning of brain, "Pavlov's dog's experiment", have both been implemented electronically using actual physical input signals as the sources of the stimuli. The biomimetic intelligence demonstrated in this neurological sensory–memory system shows its potential in promoting the advancement in multimodal, user-environment interactive AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
刚刚
ZhouYW应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
十九发布了新的文献求助20
2秒前
传奇3应助南宫幻然采纳,获得10
2秒前
鸽鸽完成签到,获得积分10
2秒前
3秒前
无花果应助zzx采纳,获得10
3秒前
Csea完成签到 ,获得积分10
3秒前
4秒前
6秒前
kathyzhang发布了新的文献求助10
6秒前
6秒前
6秒前
FashionBoy应助小刘采纳,获得10
6秒前
7秒前
7秒前
7秒前
华仔应助伍六七采纳,获得10
8秒前
勤劳的筝发布了新的文献求助10
8秒前
8秒前
8秒前
研友_GZbzoZ发布了新的文献求助10
8秒前
9秒前
爆米花应助忧郁的猕猴桃采纳,获得10
9秒前
9秒前
9秒前
橙熟发布了新的文献求助10
9秒前
珊小宛完成签到,获得积分10
10秒前
sunshine发布了新的文献求助10
10秒前
lumos发布了新的文献求助10
10秒前
耽溺完成签到 ,获得积分10
12秒前
学呀学发布了新的文献求助20
12秒前
诗梦完成签到,获得积分10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817895
求助须知:如何正确求助?哪些是违规求助? 3361040
关于积分的说明 10411279
捐赠科研通 3079283
什么是DOI,文献DOI怎么找? 1691132
邀请新用户注册赠送积分活动 814348
科研通“疑难数据库(出版商)”最低求助积分说明 768086