Deep Learning for Intelligent Recognition and Prediction of Endometrial Cancer

无线电技术 卷积神经网络 磁共振成像 人工智能 深度学习 人工神经网络 子宫内膜癌 计算机科学 机器学习 预测建模 医学 癌症 放射科 内科学
作者
Yan Zhang,Cui-Lan Gong,Ling Zheng,Xiaoyan Li,Xiaomei Yang
出处
期刊:Journal of Healthcare Engineering [Hindawi Publishing Corporation]
卷期号:2021: 1-8 被引量:15
标识
DOI:10.1155/2021/1148309
摘要

The aim of the study was to investigate the intelligent recognition of radiomics based on the convolutional neural network (CNN) in predicting endometrial cancer (EC). In this study, 158 patients with EC in hospital were selected as the research objects and divided into a training group and a test group. All the patients underwent magnetic resonance imaging (MRI) before surgery. Based on the CNN, the imaging model of EC prediction was constructed according to the characteristics. Besides, the comprehensive prediction model was established through the clinical information and imaging parameters. The results showed that the area under the working characteristic curve (AUC) of the radiomics model and comprehensive prediction model was 0.897 and 0.913 in the training group, respectively. In addition, the AUC of the radiomics model was 0.889 in the test group and that of the comprehensive prediction model was 0.897. The comprehensive prediction model was established through specific imaging parameters and clinical pathological information, and its prediction performance was good, indicating that radiomics parameters could be applied as noninvasive markers to predict EC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqqq22完成签到,获得积分10
1秒前
这课题真顺利完成签到,获得积分10
1秒前
2秒前
3秒前
郝靖发布了新的文献求助10
3秒前
6秒前
李烛尘完成签到,获得积分10
7秒前
传奇3应助MaRulong采纳,获得10
8秒前
机智的冰夏完成签到 ,获得积分10
8秒前
难过笑寒完成签到,获得积分10
8秒前
8秒前
lff完成签到,获得积分10
9秒前
小蘑菇应助温羞花采纳,获得10
9秒前
10秒前
liiy发布了新的文献求助10
10秒前
偶然847完成签到,获得积分10
11秒前
sunce1990完成签到 ,获得积分10
12秒前
王士钰发布了新的文献求助10
14秒前
14秒前
HY完成签到,获得积分10
15秒前
16秒前
桐桐应助liiy采纳,获得10
16秒前
16秒前
科目三应助魏晓宇采纳,获得10
17秒前
小二郎应助高高代珊采纳,获得10
17秒前
19秒前
19秒前
欧凰发布了新的文献求助10
19秒前
20秒前
雍远望发布了新的文献求助10
21秒前
香蕉晓曼发布了新的文献求助10
22秒前
23秒前
1234567发布了新的文献求助10
24秒前
25秒前
Iven发布了新的文献求助10
26秒前
Akim应助高高代珊采纳,获得10
26秒前
26秒前
孤星泪发布了新的文献求助10
26秒前
KDC发布了新的文献求助10
27秒前
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4082955
求助须知:如何正确求助?哪些是违规求助? 3622222
关于积分的说明 11491182
捐赠科研通 3337161
什么是DOI,文献DOI怎么找? 1834493
邀请新用户注册赠送积分活动 903413
科研通“疑难数据库(出版商)”最低求助积分说明 821584