Lens Opacities Classification System III–based artificial intelligence program for automatic cataract grading

分级(工程) 人工智能 计算机科学 白内障 医学 机器学习 模式识别(心理学) 眼科 工程类 土木工程
作者
Qiang Lu,Ling Wei,Wenwen He,Keke Zhang,Jinrui Wang,Yinglei Zhang,Xianfang Rong,Zhennan Zhao,Lei Cai,Xixi He,Jun Wu,Dayong Ding,Yi Lü,Xiangjia Zhu
出处
期刊:Journal of Cataract and Refractive Surgery [Lippincott Williams & Wilkins]
卷期号:48 (5): 528-534 被引量:7
标识
DOI:10.1097/j.jcrs.0000000000000790
摘要

To establish and validate an artificial intelligence (AI)-assisted automatic cataract grading program based on the Lens Opacities Classification System III (LOCS III).Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.AI training.Advanced deep-learning algorithms, including Faster R-CNN and ResNet, were applied to the localization and analysis of the region of interest. An internal dataset from the EENT Hospital of Fudan University and an external dataset from the Pujiang Eye Study were used for AI training, validation, and testing. The datasets were automatically labeled on the AI platform regarding the capture mode and cataract grading based on the LOCS III.The AI program showed reliable capture mode recognition, grading, and referral capability for nuclear and cortical cataract grading. In the internal and external datasets, 99.4% and 100% of automatic nuclear grading, respectively, had an absolute prediction error of ≤1.0, with a satisfactory referral capability (area under the curve [AUC]: 0.983 for the internal dataset; 0.977 for the external dataset); 75.0% (internal dataset) and 93.5% (external dataset) of the automatic cortical grades had an absolute prediction error of ≤1.0, with AUCs of 0.855 and 0.795 for referral, respectively. Good consistency was observed between automatic and manual grading when both nuclear and cortical cataracts were evaluated. However, automatic grading of posterior subcapsular cataracts was impractical.The AI program proposed in this study showed robust grading and diagnostic performance for both nuclear and cortical cataracts, based on LOCS III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh发布了新的文献求助10
刚刚
murphy完成签到,获得积分10
刚刚
popo发布了新的文献求助10
1秒前
超锅完成签到,获得积分20
2秒前
细腻的沂发布了新的文献求助10
2秒前
2秒前
2秒前
希望天下0贩的0应助N_N采纳,获得10
3秒前
3秒前
神勇的兜发布了新的文献求助10
3秒前
3秒前
852应助石文采纳,获得10
4秒前
11223344发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
自然卷完成签到,获得积分10
5秒前
5秒前
飞在夏夜的猫完成签到,获得积分10
5秒前
ranqiang发布了新的文献求助10
6秒前
6秒前
憨憨完成签到,获得积分10
6秒前
文献狂人发布了新的文献求助10
6秒前
7秒前
天天快乐应助章半仙采纳,获得10
7秒前
如梦中发布了新的文献求助10
7秒前
hanzhipad应助aniu采纳,获得10
8秒前
8秒前
yaaaaajie完成签到,获得积分10
8秒前
李健应助阿童木采纳,获得10
8秒前
popo完成签到,获得积分10
9秒前
连忘幽完成签到,获得积分10
9秒前
Huying完成签到,获得积分20
9秒前
可爱的函函应助李小二采纳,获得10
9秒前
汉堡包应助lzy采纳,获得10
9秒前
激昂的渊思完成签到,获得积分10
9秒前
10秒前
10秒前
上官若男应助小梦采纳,获得10
10秒前
星辰大海应助shusz采纳,获得10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813742
求助须知:如何正确求助?哪些是违规求助? 3358095
关于积分的说明 10391771
捐赠科研通 3075433
什么是DOI,文献DOI怎么找? 1689298
邀请新用户注册赠送积分活动 812632
科研通“疑难数据库(出版商)”最低求助积分说明 767288