Lens Opacities Classification System III–based artificial intelligence program for automatic cataract grading

分级(工程) 人工智能 计算机科学 白内障 医学 机器学习 模式识别(心理学) 眼科 工程类 土木工程
作者
Qiang Lu,Ling Wei,Wenwen He,Keke Zhang,Jinrui Wang,Yinglei Zhang,Xianfang Rong,Zhennan Zhao,Lei Cai,Xixi He,Jun Wu,Dayong Ding,Yi Lü,Xiangjia Zhu
出处
期刊:Journal of Cataract and Refractive Surgery [Lippincott Williams & Wilkins]
卷期号:48 (5): 528-534 被引量:9
标识
DOI:10.1097/j.jcrs.0000000000000790
摘要

To establish and validate an artificial intelligence (AI)-assisted automatic cataract grading program based on the Lens Opacities Classification System III (LOCS III).Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.AI training.Advanced deep-learning algorithms, including Faster R-CNN and ResNet, were applied to the localization and analysis of the region of interest. An internal dataset from the EENT Hospital of Fudan University and an external dataset from the Pujiang Eye Study were used for AI training, validation, and testing. The datasets were automatically labeled on the AI platform regarding the capture mode and cataract grading based on the LOCS III.The AI program showed reliable capture mode recognition, grading, and referral capability for nuclear and cortical cataract grading. In the internal and external datasets, 99.4% and 100% of automatic nuclear grading, respectively, had an absolute prediction error of ≤1.0, with a satisfactory referral capability (area under the curve [AUC]: 0.983 for the internal dataset; 0.977 for the external dataset); 75.0% (internal dataset) and 93.5% (external dataset) of the automatic cortical grades had an absolute prediction error of ≤1.0, with AUCs of 0.855 and 0.795 for referral, respectively. Good consistency was observed between automatic and manual grading when both nuclear and cortical cataracts were evaluated. However, automatic grading of posterior subcapsular cataracts was impractical.The AI program proposed in this study showed robust grading and diagnostic performance for both nuclear and cortical cataracts, based on LOCS III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小花排草应助老实和尚采纳,获得30
1秒前
Orange应助失眠玉米采纳,获得10
3秒前
4秒前
11完成签到,获得积分20
4秒前
杨远杰完成签到 ,获得积分10
6秒前
kyhappy_2002完成签到 ,获得积分10
6秒前
辛儿的毅发布了新的文献求助10
6秒前
今后应助springovo采纳,获得10
7秒前
背后友蕊发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
Krstal发布了新的文献求助10
11秒前
停云濛濛完成签到 ,获得积分10
11秒前
11秒前
所所应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
12秒前
辛儿的毅完成签到,获得积分20
12秒前
13秒前
汉堡包应助小橙子采纳,获得10
13秒前
科研通AI5应助郭郭郭采纳,获得10
16秒前
兰瓜瓜发布了新的文献求助10
16秒前
泡泡糖发布了新的文献求助10
17秒前
凤舞九天完成签到,获得积分10
19秒前
康阿蛋发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
Jasper应助yyyyy采纳,获得10
23秒前
23秒前
小马甲应助小右采纳,获得10
23秒前
充电宝应助康阿蛋采纳,获得10
25秒前
feifeifei发布了新的文献求助10
26秒前
领导范儿应助miaomiao采纳,获得10
26秒前
PMY发布了新的文献求助10
27秒前
充电宝应助浮浮世世采纳,获得10
28秒前
holic完成签到,获得积分10
29秒前
巴哒发布了新的文献求助20
29秒前
二七完成签到 ,获得积分10
31秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291359
求助须知:如何正确求助?哪些是违规求助? 3818462
关于积分的说明 11957583
捐赠科研通 3461893
什么是DOI,文献DOI怎么找? 1898815
邀请新用户注册赠送积分活动 947343
科研通“疑难数据库(出版商)”最低求助积分说明 850074