Semantic Segmentation Based on Temporal Features: Learning of Temporal–Spatial Information From Time-Series SAR Images for Paddy Rice Mapping

计算机科学 合成孔径雷达 人工智能 分割 模式识别(心理学) 背景(考古学) 时间序列 遥感 机器学习 地理 考古
作者
Lingbo Yang,Ran Huang,Jingfeng Huang,Tao Lin,Limin Wang,Ruzemaimaiti Mijiti,Pengliang Wei,Chao Tang,Jie Shao,Qiangzi Li,Xin Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:56
标识
DOI:10.1109/tgrs.2021.3099522
摘要

Synthetic aperture radar (SAR) can be used to obtain remote sensing images of different growth stages of crops under all weather conditions. Such time-series SAR images can provide an abundance of temporal and spatial features for use in large-scale crop mapping and analysis. In this study, we propose a temporal feature-based segmentation (TFBS) model for accurate crop mapping using time-series SAR images. This model first extracts deep-seated temporal features and then learns the spatial context of the extracted temporal features for crop mapping. The results indicate that the TFBS model significantly outperforms traditional long short-term memory (LSTM), U-network, and convolutional LSTM models in crop mapping based on time-series SAR images. TFBS demonstrates better generalizability than other models in the study area, which makes it more transferable, and the results show that data augmentation can significantly improve this generalizability. The visualization of the temporal features extracted by the TFBS shows that there is a high degree of intraclass homogeneity among rice fields and interclass heterogeneity between rice fields and other features. TFBS also achieved the highest accuracy of the four deep learning models for multicrop classification in the study area. This study presents a feasible way of producing high-accuracy large-scale crop maps based on the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利毕业完成签到,获得积分10
1秒前
CodeCraft应助武雨寒采纳,获得10
2秒前
赘婿应助多愁善感的鱼采纳,获得10
2秒前
4秒前
传奇3应助无辜的夜绿采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
7秒前
开朗灯泡完成签到,获得积分20
8秒前
顺利毕业发布了新的文献求助10
8秒前
淡然冬灵发布了新的文献求助10
9秒前
hoope完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
思源应助cc采纳,获得10
10秒前
chlc6973完成签到,获得积分10
10秒前
柚子树完成签到 ,获得积分10
10秒前
开朗灯泡发布了新的文献求助10
11秒前
隐形曼青应助lve采纳,获得10
13秒前
小蘑菇应助现代绮玉采纳,获得10
13秒前
14秒前
Jared应助andrele采纳,获得10
14秒前
是榤啊发布了新的文献求助10
14秒前
14秒前
14秒前
王瑄瑄发布了新的文献求助10
14秒前
15秒前
mayumei发布了新的文献求助10
15秒前
我是老大应助xcwy采纳,获得10
15秒前
wanci应助lemono_o采纳,获得10
15秒前
阿米完成签到 ,获得积分10
16秒前
16秒前
PubMed556发布了新的文献求助10
16秒前
Ellie发布了新的文献求助10
17秒前
科研通AI6应助蔡晓华采纳,获得10
17秒前
愤怒的豌豆完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594647
求助须知:如何正确求助?哪些是违规求助? 4680250
关于积分的说明 14813852
捐赠科研通 4647712
什么是DOI,文献DOI怎么找? 2535081
邀请新用户注册赠送积分活动 1503074
关于科研通互助平台的介绍 1469521