An Introduction to Genetic Algorithms

计算机科学 算法
作者
Melanie Mitchell
标识
DOI:10.7551/mitpress/3927.001.0001
摘要

Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation. Bradford Books imprint
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sapey完成签到,获得积分10
刚刚
简单的皮皮虾完成签到 ,获得积分10
刚刚
HYD发布了新的文献求助10
刚刚
1秒前
小尾巴完成签到,获得积分10
1秒前
小瓢虫完成签到 ,获得积分10
1秒前
华仔应助君陌采纳,获得10
1秒前
燕儿应助超级诗筠采纳,获得10
1秒前
冷酷丹翠完成签到 ,获得积分10
2秒前
2秒前
飞快的大碗给飞快的大碗的求助进行了留言
2秒前
zhenzhen发布了新的文献求助10
2秒前
雨相所至发布了新的文献求助10
3秒前
Orange发布了新的文献求助10
3秒前
英俊的铭应助DXY采纳,获得10
3秒前
hq完成签到 ,获得积分10
3秒前
aaa4发布了新的文献求助10
3秒前
在水一方应助析渊采纳,获得10
3秒前
yangyang完成签到,获得积分10
4秒前
4秒前
乐乐应助Adzuki0812采纳,获得10
5秒前
5秒前
不安青牛应助刘刘采纳,获得10
5秒前
7秒前
yangyang发布了新的文献求助10
7秒前
8秒前
9秒前
研友_842M4n发布了新的文献求助10
9秒前
龙傲天完成签到,获得积分10
10秒前
彭于晏应助zhonglv7采纳,获得10
10秒前
雨相所至完成签到,获得积分10
10秒前
agou发布了新的文献求助10
11秒前
11秒前
11秒前
策略完成签到,获得积分10
11秒前
九龙飞翔完成签到,获得积分10
11秒前
zhenzhen完成签到,获得积分10
12秒前
怕黑满天发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4744887
求助须知:如何正确求助?哪些是违规求助? 4093471
关于积分的说明 12663886
捐赠科研通 3804915
什么是DOI,文献DOI怎么找? 2100636
邀请新用户注册赠送积分活动 1126052
关于科研通互助平台的介绍 1002434