数学
希尔伯特空间
正规化(语言学)
规范(哲学)
应用数学
趋同(经济学)
投影法
二次方程
凸函数
数学优化
约束(计算机辅助设计)
正多边形
投影(关系代数)
凸优化
缩小
二次规划
数学分析
算法
Dykstra投影算法
计算机科学
经济增长
几何学
人工智能
政治学
法学
经济
标识
DOI:10.1080/01630569208816489
摘要
Abstract Minimization problems in Hilbert space with quadratic objective function and closed convex constraint set C are considered. In case the minimum is not unique we are looking for the solution of minimal norm. If a problem is ill-posed, i.e. if the solution does not depend continuously on the data, and if the data are subject to errors then it has to be solved by means of regularization methods. The regularizing properties of some gradient projection methods—i.e. convergence for exact data, order of convergence under additional assumptions on the solution and stability for perturbed data—are the main issues of this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI