A novel transformer-based network with attention mechanism for automatic pavement crack detection

卷积神经网络 分割 计算机科学 编码器 变压器 可视化 人工智能 特征提取 工程类 电压 操作系统 电气工程
作者
Feng Guo,Jian Liu,Chengshun Lv,Huayang Yu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:391: 131852-131852 被引量:41
标识
DOI:10.1016/j.conbuildmat.2023.131852
摘要

Currently, there is an urgent need to utilize automatic approaches to detecting pavement cracks for roadway maintenance. Taking advantage of the development of convolutional neural networks (CNNs), previous studies put more effort into the detection of the pavement crack with local feature extraction using consecutive convolutional operations. However, it results in the loss of detailed information, making CNNs fail to accurately inspect the long and complicated cracks under noisy conditions, which are common on the pavement surface, negatively impacting detection accuracy. In order to cope with this issue, this study proposes a Transformer-based semantic segmentation network that unifies the Swin Transformer as the Encoder and the UperNet with the attention module as the Decoder for robust and accurate pixel-level pavement crack detection. Leveraging the hierarchical architecture of Swin Transformer, the global and long-range semantic features of the pavement crack are learned for improved segmentation accuracy. With the assistance of the attention module, the Decoder can retrieve more details of the crack information, presenting accurate detection results on the fine and tiny pavement cracks. To validate the superiority of the proposed network, we have trained and tested six semantic segmentation models on three public pavement crack datasets. Compared to other models, the proposed model achieves the best performance on visualization and evaluation metrics of mean F1(mF1) and mean Recall (mRecall) with 0-pixel tolerance. It paves the way for future applications of automatic pavement crack detection using Transformed-based networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心宝贝发布了新的文献求助10
1秒前
1秒前
善学以致用应助睡不醒采纳,获得10
2秒前
palexander发布了新的文献求助10
2秒前
jiafang完成签到,获得积分10
2秒前
3秒前
3秒前
英勇菲鹰完成签到,获得积分20
3秒前
szj完成签到,获得积分10
4秒前
6秒前
SSS发布了新的文献求助10
6秒前
科研兄发布了新的文献求助10
6秒前
星辰大海应助youngman2025sci采纳,获得10
7秒前
7秒前
8秒前
SYLH应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
CAOHOU应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
11秒前
章鱼完成签到,获得积分10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
王迪发布了新的文献求助30
12秒前
南风发布了新的文献求助10
12秒前
luo发布了新的文献求助10
13秒前
stan完成签到,获得积分10
13秒前
王世缘发布了新的文献求助10
14秒前
李健应助palexander采纳,获得10
15秒前
烂漫飞瑶完成签到,获得积分10
15秒前
郑砚桐发布了新的文献求助10
16秒前
阿尔治完成签到,获得积分10
18秒前
19秒前
科研通AI5应助英勇菲鹰采纳,获得10
19秒前
Ava应助wuliangliang1211采纳,获得10
20秒前
23秒前
lll发布了新的文献求助10
27秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802475
求助须知:如何正确求助?哪些是违规求助? 3348107
关于积分的说明 10336540
捐赠科研通 3064030
什么是DOI,文献DOI怎么找? 1682365
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997