Unsupervised Machine Learning for Species Delimitation, Integrative Taxonomy, and Biodiversity Conservation

聚类分析 计算机科学 灵活性(工程) 无监督学习 机器学习 人口 分类学(生物学) 人工智能 数据科学 数据挖掘 生态学 生物 数学 统计 社会学 人口学
作者
R. Alexander Pyron
标识
DOI:10.1101/2023.06.12.544639
摘要

Abstract Integrative taxonomy combining data from multiple axes of biologically relevant variation is a major recent goal of systematics. Ideally, such taxonomies would be backed by similarly integrative species-delimitation analyses. Yet, most current methods rely solely or primarily on molecular data, with other layers often incorporated only in a post hoc qualitative or comparative manner. A major limitation is the difficulty of deriving and implementing quantitative parametric models linking different datasets in a unified ecological and evolutionary framework. Machine Learning methods offer flexibility in this arena by learning high-dimensional associations between observations (e.g., individual specimens) across a wide array of input features (e.g., genetics, geography, environment, and phenotype) to delineate statistical clusters. Here, I implement an unsupervised method using Self-Organizing (or “Kohonen”) Maps (SOMs). Recent extensions called SuperSOMs can integrate an arbitrary number of layers, each of which exerts independent influence on the two-dimensional output clustering via empirically estimated weights. These output clusters can then be delimited into K significant units that are interpreted as species or other entities. I show an empirical example in Desmognathus salamanders with layers representing alleles, space, climate, and traits. Simulations reveal that the SOM/SuperSOM approach can detect K= 1, does not over-split, reflects contributions from all layers with signal, and does not allow layer size (e.g., large genetic matrices) to overwhelm other datasets, desirable properties addressing major concerns from previous methods. Finally, I suggest that these and similar methods could integrate conservation-relevant layers such as population trends and human encroachment to delimit management units from an explicitly quantitative framework grounded in the ecology and evolution of species limits and boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅笑完成签到,获得积分10
1秒前
陈JY完成签到 ,获得积分10
1秒前
2秒前
3秒前
关达完成签到,获得积分20
3秒前
传奇3应助安慧容采纳,获得10
4秒前
6秒前
任性凤凰发布了新的文献求助10
7秒前
小蘑菇应助zzzz采纳,获得10
8秒前
扳迪发布了新的文献求助10
8秒前
卷毛狗发布了新的文献求助10
9秒前
多和5的武器完成签到,获得积分10
10秒前
张振宇完成签到 ,获得积分10
14秒前
14秒前
zhou完成签到,获得积分10
16秒前
任性凤凰完成签到,获得积分20
17秒前
倪倪完成签到,获得积分10
19秒前
qs发布了新的文献求助10
19秒前
我是老大应助首席或雪月采纳,获得10
20秒前
Atom完成签到,获得积分10
21秒前
彬子完成签到,获得积分10
21秒前
在水一方应助changnan采纳,获得10
22秒前
24秒前
adam完成签到,获得积分10
24秒前
mc发布了新的文献求助10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
pluto应助科研通管家采纳,获得10
25秒前
qiao应助科研通管家采纳,获得10
25秒前
25秒前
Lucas应助任性凤凰采纳,获得10
26秒前
大咖发布了新的文献求助10
28秒前
潘辉完成签到,获得积分10
29秒前
科研通AI5应助三幅画采纳,获得10
30秒前
科研通AI5应助三幅画采纳,获得10
30秒前
匀速前行发布了新的文献求助10
30秒前
夏小安完成签到,获得积分10
31秒前
31秒前
马哥二弟无敌完成签到 ,获得积分10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979