Anomaly Detection Algorithm Based on Broad Learning System and Support Vector Domain Description

支持向量机 稳健性(进化) 计算机科学 人工智能 异常检测 人工神经网络 算法 一般化 模式识别(心理学) 机器学习 数据挖掘 数学 生物化学 基因 数学分析 化学
作者
Qun Huang,Zehua Zheng,Wenhao Zhu,Xiaozhao Fang,Ribo Fang,Weijun Sun
出处
期刊:Mathematics [MDPI AG]
卷期号:10 (18): 3292-3292 被引量:2
标识
DOI:10.3390/math10183292
摘要

Deep neural network-based autoencoders can effectively extract high-level abstract features with outstanding generalization performance but suffer from sparsity of extracted features, insufficient robustness, greedy training of each layer, and a lack of global optimization. In this study, the broad learning system (BLS) is improved to obtain a new model for data reconstruction. Support Vector Domain Description (SVDD) is one of the best-known one-class-classification methods used to solve problems where the proportion of sample categories of data is extremely unbalanced. The SVDD is sensitive to penalty parameters C, which represents the trade-off between sphere volume and the number of target data outside the sphere. The training process only considers normal samples, which leads to a low recall rate and weak generalization performance. To address these issues, we propose a BLS-based weighted SVDD algorithm (BLSW_SVDD), which introduces reconstruction error weights and a small number of anomalous samples when training the SVDD model, thus improving the robustness of the model. To evaluate the performance of BLSW_SVDD model, comparison experiments were conducted on the UCI dataset, and the experimental results showed that in terms of accuracy and F1 values, the algorithm has better performance advantages than the traditional and improved SVDD algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助10
刚刚
i1发布了新的文献求助10
1秒前
木子Lee发布了新的文献求助10
1秒前
1秒前
我是老大应助佳佳采纳,获得10
1秒前
传奇3应助snow采纳,获得10
3秒前
蹦蹦完成签到,获得积分10
3秒前
南兮发布了新的文献求助10
3秒前
车车完成签到,获得积分10
3秒前
天天快乐应助nightgaunt采纳,获得10
3秒前
可爱的函函应助园游会采纳,获得10
4秒前
爱虹遍野完成签到,获得积分10
4秒前
5秒前
退后分裂搁浅完成签到,获得积分10
5秒前
5秒前
SciGPT应助徐丽采纳,获得10
5秒前
6秒前
neosalius完成签到,获得积分10
7秒前
科研通AI6应助TIAMO采纳,获得10
7秒前
超帅凡阳发布了新的文献求助10
7秒前
7秒前
8秒前
S.H.W完成签到,获得积分10
8秒前
如意代容完成签到,获得积分10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
dew应助ccz采纳,获得10
9秒前
吴畅完成签到,获得积分20
9秒前
oner发布了新的文献求助10
10秒前
10秒前
桐桐应助qq采纳,获得10
10秒前
11秒前
螺丝公主发布了新的文献求助10
11秒前
amupf完成签到 ,获得积分10
11秒前
Ava应助thinking采纳,获得10
12秒前
12秒前
orixero应助123采纳,获得10
12秒前
12秒前
iris2333发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545851
求助须知:如何正确求助?哪些是违规求助? 4631846
关于积分的说明 14622939
捐赠科研通 4573564
什么是DOI,文献DOI怎么找? 2507609
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455594