EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition

欧几里德距离 计算机科学 脑电图 功能连接 特征提取 情绪分类 脑-机接口 距离矩阵 语音识别 矩阵范数 基质(化学分析) 频域 模式识别(心理学) 人工智能 无线电频谱 频带 数学 心理学 电信 算法 物理 神经科学 特征向量 精神科 复合材料 材料科学 量子力学 计算机视觉 带宽(计算) 计算机网络
作者
Yuchan Zhang,Guanghui Yan,Wenwen Chang,Wenqie Huang,Yueting Yuan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104157-104157 被引量:30
标识
DOI:10.1016/j.bspc.2022.104157
摘要

The study of emotional states in brain-computer interface (BCI) has a wide range of applications in psychiatry, psychology, et al. However, there is few novel feature extraction method integrating time-domain and space-domain features in emotion classification. This study explored the connectivity patterns between brain regions over functional connectivity brain networks in different frequency bands of electroencephalogram (EEG) signals and proposed a novel feature extraction method to classify emotions, which provided a unique perspective on emotion recognition. We constructed phase locking value (PLV) matrices analyzed in different frequency bands. Then, three distance matrices, dF, dS, and dLE, were built using the corresponding three distance measures (the Frobenius norm, the spectral norm, and the log-Euclidean distance, respectively). And the complexity measures on those distance matrices were calculated. The distance matrices and complexity measures, as two features, were fed into the machine learning classifiers to validate the proposed method. Eventually, the dF matrix obtained an average classification accuracy of 83.96 % in the alpha band between positive and neutral emotions, the dLE matrix obtained an average classification accuracy of 84.12 % in the beta band between positive and negative emotions, and the dF matrix obtained an average classification accuracy of 83.56 % in the delta band between neutral and negative emotions. We conclude that the delta, alpha, and beta frequency bands correlate highly with emotions, and the brain's anterior and right temporal lobes are inextricably linked to emotions. In addition, the feature extraction method proposed in this paper can effectively improve the classification accuracy of emotions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕青应助敏感代云采纳,获得10
刚刚
思源应助CikY采纳,获得10
刚刚
小菜鸡完成签到,获得积分10
刚刚
刚刚
王摸鱼发布了新的文献求助10
1秒前
zz完成签到,获得积分10
1秒前
yellow完成签到,获得积分10
2秒前
2秒前
2秒前
噔噔发布了新的文献求助10
3秒前
zm应助moon采纳,获得10
3秒前
小鱼鱼完成签到,获得积分10
4秒前
傻傻的芾发布了新的文献求助10
4秒前
Tera完成签到,获得积分10
4秒前
4秒前
充电宝应助Gaowenjie采纳,获得10
4秒前
5秒前
5秒前
5秒前
简.....发布了新的文献求助10
5秒前
饶倬瑜完成签到,获得积分10
5秒前
上官若男应助诺贝尔丸子采纳,获得10
5秒前
观鹤轩完成签到 ,获得积分10
5秒前
庚庚完成签到,获得积分10
6秒前
Lucas应助欠虐宝宝采纳,获得50
6秒前
量子星尘发布了新的文献求助10
7秒前
22发布了新的文献求助10
7秒前
8秒前
8秒前
一定读懂aaa完成签到,获得积分10
8秒前
科目三应助程破茧采纳,获得10
8秒前
8秒前
小鱼鱼发布了新的文献求助20
9秒前
yucenwu完成签到,获得积分10
9秒前
LQ发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
栗子发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071427
求助须知:如何正确求助?哪些是违规求助? 4292111
关于积分的说明 13373408
捐赠科研通 4112841
什么是DOI,文献DOI怎么找? 2252088
邀请新用户注册赠送积分活动 1257155
关于科研通互助平台的介绍 1189893