Real-Time Safety Helmet Detection Using Yolov5 at Construction Sites

个人防护装备 计算机科学 多样性(控制论) 坠落(事故) 职业安全与健康 建筑 业务 风险分析(工程) 计算机安全 运营管理 医学 工程类 2019年冠状病毒病(COVID-19) 人工智能 环境卫生 法学 政治学 视觉艺术 病理 传染病(医学专业) 艺术 疾病
作者
Kisaezehra,Muhammad Umer Farooq,Muhammad Aslam Bhutto,Abdul Karim Kazi
出处
期刊:Intelligent Automation and Soft Computing [Taylor & Francis]
卷期号:36 (1): 911-927 被引量:25
标识
DOI:10.32604/iasc.2023.031359
摘要

The construction industry has always remained the economic and social backbone of any country in the world where occupational health and safety (OHS) is of prime importance. Like in other developing countries, this industry pays very little, rather negligible attention to OHS practices in Pakistan, resulting in the occurrence of a wide variety of accidents, mishaps, and near-misses every year. One of the major causes of such mishaps is the non-wearing of safety helmets (hard hats) at construction sites where falling objects from a height are unavoidable. In most cases, this leads to serious brain injuries in people present at the site in general and the workers in particular. It is one of the leading causes of human fatalities at construction sites. In the United States, the Occupational Safety and Health Administration (OSHA) requires construction companies through safety laws to ensure the use of well-defined personal protective equipment (PPE). It has long been a problem to ensure the use of PPE because round-the-clock human monitoring is not possible. However, such monitoring through technological aids or automated tools is very much possible. The present study describes a systematic strategy based on deep learning (DL) models built on the You-Only-Look-Once (YOLOV5) architecture that could be used for monitoring workers’ hard hats in real-time. It can indicate whether a worker is wearing a hat or not. The proposed system uses five different models of the YOLOV5, namely YOLOV5n, YOLOv5s, YOLOv5 m, YOLOv5l, and YOLOv5x for object detection with the support of PyTorch, involving 7063 images. The results of the study show that among the DL models, the YOLOV5x has a high performance of 95.8% in terms of the mAP, while the YOLOV5n has the fastest detection speed of 70.4 frames per second (FPS). The proposed model can be successfully used in practice to recognize the hard hat worn by a worker.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助ycy采纳,获得10
1秒前
isojso完成签到,获得积分10
2秒前
lichaoyes完成签到,获得积分10
2秒前
BBFIU发布了新的文献求助30
2秒前
Jasper应助燕海雪采纳,获得10
2秒前
鱼香rose发布了新的文献求助10
3秒前
我是老大应助无情的宛儿采纳,获得10
4秒前
嘛呱发布了新的文献求助10
4秒前
huxiao完成签到,获得积分10
5秒前
5秒前
6秒前
FashionBoy应助读书的时候采纳,获得10
7秒前
谢谢完成签到 ,获得积分10
9秒前
liu123发布了新的文献求助10
10秒前
11秒前
hha发布了新的文献求助10
12秒前
汉堡包应助陆转采纳,获得10
13秒前
14秒前
15秒前
17秒前
嘛呱完成签到,获得积分10
17秒前
深情安青应助追月的猪采纳,获得10
18秒前
18秒前
18秒前
18秒前
20秒前
22秒前
微笑子慧发布了新的文献求助10
22秒前
hjc641发布了新的文献求助10
23秒前
共享精神应助自信的宝贝采纳,获得10
26秒前
小蘑菇应助echo采纳,获得10
27秒前
大个应助读书的时候采纳,获得10
27秒前
27秒前
Orange应助谢谢采纳,获得10
30秒前
是羽曦呀应助Iwan采纳,获得10
31秒前
风清扬应助庄周采纳,获得10
32秒前
锦鲤完成签到 ,获得积分10
33秒前
aaa完成签到,获得积分10
33秒前
Fiona发布了新的文献求助10
33秒前
卡卡发布了新的文献求助10
33秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4079587
求助须知:如何正确求助?哪些是违规求助? 3619095
关于积分的说明 11485151
捐赠科研通 3335315
什么是DOI,文献DOI怎么找? 1833496
邀请新用户注册赠送积分活动 902611
科研通“疑难数据库(出版商)”最低求助积分说明 821196