GeSANet: Geospatial-Awareness Network for VHR Remote Sensing Image Change Detection

地理空间分析 高光谱成像 计算机科学 变更检测 遥感 特征提取 图像分辨率 人工智能 特征(语言学) 数据挖掘 模式识别(心理学) 计算机视觉 地理 语言学 哲学
作者
Xiaoyang Zhao,Keyun Zhao,Siyao Li,Xianghai Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2023.3272550
摘要

The characteristics of very high resolution (VHR) remote sensing images (RSIs) have higher spatial resolution inherently, and are easier to obtain globally compared with hyperspectral images (HSIs), making it possible to detect small-scale land cover changes in multiple applications. RSI change detection (RSI-CD) based on deep learning has been paid attention to and become a frontier research field in recent years, and is currently facing two challenging problems: The first is high dependence on registration between bi-temporal images caused by high spatial resolution; The other is high pseudo-change information response caused by low spectral resolution. In order to address the above-mentioned two problems, a novel RSI-CD framework called Geospatial-Awareness Network (GeSANet) based on the geospatial Position Matching Mechanism (PMM) with multi-level adjustment and the geo-spatial Content Reasoning Mechanism (CRM) with diverse pseudo-change information filtering is proposed. First of all, the PMM assigns independent two-dimensional offset coordinates to each position in the previous temporal image, afterwards, bilinear interpolation is employed to obtain the subpixel feature value after the offset, and the sparse results based on the difference are transmitted to the next level prediction to realize multi-level geospatial correction. The CRM extracts global features from the corrected sparse feature map in terms of dimensions, implementing effective discriminant feature extraction on basis of the original feature map in a stepwise refinement manner through the cross-dimension exchange mechanism, to filter out various pseudo-change information as well as maintain real change information. Comparison experiments with five recent SOTA methods are carried out on two popular datasets with diverse changes, the results show that the proposed method has good robustness and validity for multi-temporal RSI-CD. In particular, it has a strong comparative advantage in detecting small entity changes and edge details. The source code of the proposed framework can be downloaded from https://github.com/zxylnnu/GeSANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Huang完成签到,获得积分10
刚刚
马金利完成签到,获得积分10
1秒前
呆瓜完成签到 ,获得积分10
1秒前
大尾巴鱼完成签到,获得积分10
1秒前
1秒前
小马甲应助追寻的问玉采纳,获得10
2秒前
飞在天空的风应助小菜采纳,获得10
3秒前
凌云完成签到,获得积分10
3秒前
SYLH应助czcz采纳,获得10
4秒前
关美人儿完成签到,获得积分10
4秒前
yoyofun完成签到,获得积分10
4秒前
laxnx完成签到,获得积分10
4秒前
格非完成签到,获得积分10
5秒前
5秒前
马金利发布了新的文献求助10
5秒前
5秒前
静静在学呢完成签到,获得积分10
5秒前
为什么发布了新的文献求助10
6秒前
xzz发布了新的文献求助10
6秒前
niyl完成签到,获得积分10
6秒前
long完成签到,获得积分10
6秒前
风中人杰完成签到,获得积分10
6秒前
老实翠桃完成签到,获得积分10
7秒前
谨慎的凝丝完成签到,获得积分10
7秒前
温婉的鸿煊完成签到,获得积分10
7秒前
舒心的依风完成签到,获得积分10
7秒前
鑫渊完成签到,获得积分10
8秒前
失眠的饼干完成签到 ,获得积分10
9秒前
JamesPei应助lll采纳,获得10
9秒前
10秒前
心信鑫完成签到 ,获得积分10
11秒前
zSmart完成签到,获得积分10
11秒前
11秒前
11秒前
蜜桃乌龙茶完成签到,获得积分10
11秒前
zhao完成签到,获得积分10
12秒前
殷少华完成签到,获得积分10
12秒前
miu完成签到,获得积分10
12秒前
75986686完成签到,获得积分10
12秒前
yoyo完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816043
求助须知:如何正确求助?哪些是违规求助? 3359559
关于积分的说明 10403403
捐赠科研通 3077404
什么是DOI,文献DOI怎么找? 1690297
邀请新用户注册赠送积分活动 813734
科研通“疑难数据库(出版商)”最低求助积分说明 767781