Knowledge map construction based on association rule mining extending with interaction frequencies and knowledge tracking for rules cleaning

关联规则学习 计算机科学 聚类分析 数据挖掘 知识抽取 构造(python库) 集合(抽象数据类型) 联想(心理学) 滤波器(信号处理) 人工智能 机器学习 计算机视觉 认识论 哲学 程序设计语言
作者
Jing Fang,Xiong Xiao,Xiuling He,Yangyang Li,Huanhuan Yuan,Xiaomin Jiao
出处
期刊:Interactive Learning Environments [Taylor & Francis]
卷期号:32 (8): 4411-4425 被引量:4
标识
DOI:10.1080/10494820.2023.2200794
摘要

Knowledge maps are teaching tools that can promote deeply learning and avoid knowledge loss by helping students plan learning paths. Mining potential association rules of concepts from student exercise data was a common method to construct knowledge maps automatically. While manual conditions should be set to filter the association rules future to improve the accuracy of knowledge maps, which made the construction of the knowledge map can not automatic totally. So, the study proposed a knowledge map construction method that combined knowledge tracking and association rule mining expanding with interaction frequencies based on exercise data to achieve rules cleaning automatically. The method first predicted students' knowledge mastery sequences by a deep knowledge tracking model and discovered clustering relations to represent potential structures between concepts by fuzzy cluster analysis. Meanwhile, the method investigated association rule mining expanding with interaction frequencies to discover association rules between concepts. Finally, the clustering relations were used to filter the mined association rules automatically. To verify the effectiveness of the method, we constructed a knowledge map based on 34,350 online exercise data of 117 students in a computer programming course. Experimental results proved that the map was valid. Our implementations are available at https://github.com/xxdmw/FPGF-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Fandash采纳,获得10
刚刚
刚刚
平淡冬亦完成签到 ,获得积分10
刚刚
Bb发布了新的文献求助10
1秒前
2秒前
isyfear发布了新的文献求助10
3秒前
胡憨憨发布了新的文献求助10
4秒前
滴滴发布了新的文献求助10
4秒前
5秒前
9秒前
挖掘机完成签到,获得积分10
10秒前
张祥辉完成签到,获得积分10
11秒前
12秒前
Ander完成签到 ,获得积分10
13秒前
繁星完成签到,获得积分10
13秒前
15秒前
高文强发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
缓慢耳机完成签到,获得积分20
17秒前
打打应助要减肥的晓曼采纳,获得10
18秒前
杨贵严发布了新的文献求助10
18秒前
19秒前
19秒前
赴约发布了新的文献求助10
20秒前
小杭76应助lyman采纳,获得10
21秒前
21秒前
王祥坤发布了新的文献求助10
21秒前
22秒前
aurora应助匪石采纳,获得10
23秒前
独自人生完成签到,获得积分10
24秒前
缓慢耳机关注了科研通微信公众号
24秒前
24秒前
LX发布了新的文献求助10
25秒前
温暖的百褶裙完成签到,获得积分10
25秒前
25秒前
领导范儿应助赴约采纳,获得10
26秒前
淡然的越彬完成签到,获得积分10
26秒前
CipherSage应助如意幻枫采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300488
求助须知:如何正确求助?哪些是违规求助? 4448338
关于积分的说明 13845737
捐赠科研通 4334050
什么是DOI,文献DOI怎么找? 2379324
邀请新用户注册赠送积分活动 1374471
关于科研通互助平台的介绍 1340113