高光谱成像
变更检测
冗余(工程)
计算机科学
人工智能
模式识别(心理学)
特征(语言学)
数据挖掘
目标检测
聚类分析
语言学
操作系统
哲学
作者
Meiqi Hu,Chen Wu,Boxue Du
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2303.13753
摘要
Hyperspectral change detection plays an essential role of monitoring the dynamic urban development and detecting precise fine object evolution and alteration. In this paper, we have proposed an original Efficient Multi-temporal Self-attention Network (EMS-Net) for hyperspectral change detection. The designed EMS module cuts redundancy of those similar and containing-no-changes feature maps, computing efficient multi-temporal change information for precise binary change map. Besides, to explore the clustering characteristics of the change detection, a novel supervised contrastive loss is provided to enhance the compactness of the unchanged. Experiments implemented on two hyperspectral change detection datasets manifests the out-standing performance and validity of proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI