Optimizing cervical cancer classification using transfer learning with deep gaussian processes and support vector machines

支持向量机 学习迁移 人工智能 计算机科学 机器学习 载体(分子生物学) 模式识别(心理学) 生物 生物化学 基因 重组DNA
作者
Emmanuel Ahishakiye,Fredrick Kanobe
出处
期刊:Discover Artificial Intelligence [Springer Nature]
卷期号:4 (1) 被引量:4
标识
DOI:10.1007/s44163-024-00185-6
摘要

Abstract Background Cervical cancer is the fourth most frequent cancer in women worldwide. Even though cervical cancer deaths have decreased significantly in Western countries, low and middle-income countries account for nearly 90% of cervical cancer deaths. While Western countries are leveraging the powers of artificial intelligence (AI) in the health sector, most countries in sub-Saharan Africa are still lagging. In Uganda, cytologists manually analyze Pap smear images for the detection of cervical cancer, a process that is highly subjective, slow, and tedious. Machine learning (ML) algorithms have been used in the automated classification of cervical cancer. However, most of the MLs have overfitting limitations which limits their deployment, especially in the health sector where accurate predictions are needed. Methods In this study, we propose two kernel-based algorithms for automated detection of cervical cancer. These algorithms are (1) an optimized support vector machine (SVM), and (2) a deep Gaussian Process (DGP) model. The SVM model proposed uses an optimized radial basis kernel while the DGP model uses a hybrid kernel of periodic and local periodic kernel. Results Experimental results revealed accuracy of 100% and 99.48% for an optimized SVM model and DGP model respectively. Results on precision, recall, and F1 score were also reported. Conclusions The proposed models performed well on cervical cancer detection and classification, and therefore suitable for deployment. We plan to deploy our proposed models in a mobile application-based tool. The limitation of the study was the lack of access to high-performance computational resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XLC发布了新的文献求助30
刚刚
善学以致用应助李喜喜采纳,获得10
2秒前
善学以致用应助欢呼流沙采纳,获得10
3秒前
JazzWon完成签到,获得积分10
3秒前
3秒前
无花果应助迅速的八宝粥采纳,获得10
4秒前
4秒前
专注的问筠完成签到,获得积分10
5秒前
小猛人发布了新的文献求助10
9秒前
zz发布了新的文献求助10
10秒前
怕黑道消完成签到 ,获得积分10
11秒前
施储完成签到,获得积分10
12秒前
情怀应助喝酒的二胖采纳,获得10
13秒前
研友_VZG7GZ应助XLC采纳,获得30
14秒前
科研通AI5应助小猛人采纳,获得10
16秒前
17秒前
小马甲应助zz采纳,获得10
17秒前
19秒前
19秒前
执着的采枫发布了新的文献求助200
21秒前
21秒前
LU完成签到,获得积分10
21秒前
21秒前
22秒前
shelemi发布了新的文献求助10
23秒前
whynot发布了新的文献求助10
23秒前
孙振亚发布了新的文献求助10
25秒前
25秒前
大淘发布了新的文献求助10
26秒前
小马甲应助迅速的八宝粥采纳,获得10
27秒前
无限达完成签到,获得积分10
27秒前
28秒前
李喜喜发布了新的文献求助10
29秒前
KKIII发布了新的文献求助10
33秒前
shusen完成签到,获得积分10
34秒前
在水一方应助李喜喜采纳,获得10
35秒前
所所应助lei采纳,获得10
37秒前
思源应助丝竹丛中墨未干采纳,获得20
40秒前
40秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669