GNN‐DDAS: Drug discovery for identifying anti‐schistosome small molecules based on graph neural network

计算机科学 药物发现 水准点(测量) 机器学习 人工智能 数据挖掘 生物信息学 生物 地图学 地理
作者
Xin Zeng,Peng‐Kun Feng,Shujuan Li,Shuang‐Qing Lv,Meng‐Liang Wen,Yi Li
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:45 (32): 2825-2834 被引量:2
标识
DOI:10.1002/jcc.27490
摘要

Schistosomiasis is a tropical disease that poses a significant risk to hundreds of millions of people, yet often goes unnoticed. While praziquantel, a widely used anti-schistosome drug, has a low cost and a high cure rate, it has several drawbacks. These include ineffectiveness against schistosome larvae, reduced efficacy in young children, and emerging drug resistance. Discovering new and active anti-schistosome small molecules is therefore critical, but this process presents the challenge of low accuracy in computer-aided methods. To address this issue, we proposed GNN-DDAS, a novel deep learning framework based on graph neural networks (GNN), designed for drug discovery to identify active anti-schistosome (DDAS) small molecules. Initially, a multi-layer perceptron was used to derive sequence features from various representations of small molecule SMILES. Next, GNN was employed to extract structural features from molecular graphs. Finally, the extracted sequence and structural features were then concatenated and fed into a fully connected network to predict active anti-schistosome small molecules. Experimental results showed that GNN-DDAS exhibited superior performance compared to the benchmark methods on both benchmark and real-world application datasets. Additionally, the use of GNNExplainer model allowed us to analyze the key substructure features of small molecules, providing insight into the effectiveness of GNN-DDAS. Overall, GNN-DDAS provided a promising solution for discovering new and active anti-schistosome small molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿秋秋秋完成签到 ,获得积分10
2秒前
weik完成签到,获得积分10
2秒前
4秒前
hsgfiw完成签到,获得积分10
4秒前
热心的蛋挞完成签到,获得积分10
5秒前
5秒前
Ava应助YaHe采纳,获得10
5秒前
6秒前
Ava应助Alessnndre采纳,获得10
7秒前
liao完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
彭博完成签到 ,获得积分10
9秒前
郑桂庆完成签到 ,获得积分10
12秒前
无心的浩轩完成签到,获得积分10
12秒前
SWZ发布了新的文献求助30
12秒前
13秒前
潇洒的大碗完成签到,获得积分10
13秒前
13秒前
ss发布了新的文献求助10
13秒前
jjjh发布了新的文献求助10
14秒前
15秒前
15秒前
釉质牙医完成签到,获得积分20
15秒前
小肆完成签到 ,获得积分10
16秒前
hh完成签到,获得积分10
16秒前
笔至梦花完成签到 ,获得积分10
16秒前
17秒前
YaHe发布了新的文献求助10
17秒前
18秒前
欧欧欧导发布了新的文献求助10
18秒前
我是老大应助大师采纳,获得10
19秒前
三三发布了新的文献求助10
19秒前
fafentuqiang完成签到,获得积分10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
morph发布了新的文献求助10
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982385
求助须知:如何正确求助?哪些是违规求助? 3526044
关于积分的说明 11230012
捐赠科研通 3263867
什么是DOI,文献DOI怎么找? 1801722
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767