VT-SGN:Spiking Graph Neural Network for Neuromorphic Visual-Tactile Fusion

神经形态工程学 尖峰神经网络 计算机科学 人工神经网络 人工智能 图形 神经科学 计算机视觉 心理学 理论计算机科学
作者
Peiliang Wu,Haozhe Zhang,Yao Li,Wenbai Chen,Guowei Gao
出处
期刊:IEEE Transactions on Haptics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/toh.2024.3449411
摘要

Current issues with neuromorphic visual-tactile perception include limited training network representation and inadequate cross-modal fusion. To address these two issues, we proposed a dual network called visual-tactile spiking graph neural network (VT-SGN) that combines graph neural networks and spiking neural networks to jointly utilize the neuromorphic visual and tactile source data. First, the neuromorphic visual-tactile data were expanded spatiotemporally to create a taxel-based tactile graph in the spatial domain, enabling the complete exploitation of the irregular spatial structure properties of tactile information. Subsequently, a method for converting images into graph structures was proposed, allowing the vision to be trained alongside graph neural networks and extracting graph-level features from the vision for fusion with tactile data. Finally, the data were expanded into the time domain using a spiking neural network to train the model and propagate it backwards. This framework effectively utilizes the structural differences between sample instances in the spatial dimension to improve the representational power of spiking neurons, while preserving the biodynamic mechanism of the spiking neural network. Additionally, it effectively solves the morphological variance between the two perceptions and further uses complementary data between visual and tactile. To demonstrate that our approach can improve the learning of neuromorphic perceptual information, we conducted comprehensive comparative experiments on three datasets to validate the benefits of the proposed VT-SGN framework by comparing it with state-of-the-art studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Ssmall采纳,获得10
1秒前
1秒前
4秒前
菜头完成签到,获得积分10
4秒前
5秒前
潇湘夜雨发布了新的文献求助30
9秒前
今后应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得50
9秒前
打打应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Juvenilesy应助科研通管家采纳,获得10
9秒前
昏睡的蟠桃应助科研通管家采纳,获得150
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
Pothos应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
12秒前
大个应助清新的音响采纳,获得10
13秒前
CodeCraft应助叉叉茶采纳,获得10
14秒前
伟立发布了新的文献求助10
14秒前
猫毛完成签到,获得积分10
14秒前
15秒前
haveatry发布了新的文献求助10
15秒前
Xiao_Ye发布了新的文献求助10
16秒前
领导范儿应助w934420513采纳,获得10
16秒前
立尽西风发布了新的文献求助10
17秒前
18秒前
宋文文完成签到 ,获得积分10
19秒前
19秒前
李健应助明理的傲晴采纳,获得10
20秒前
明理思真完成签到,获得积分20
20秒前
21秒前
22秒前
胡茶茶完成签到 ,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358