亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An ensemble learning-based prediction model for the compressive strength degradation of concrete containing superabsorbent polymers (SAP)

高吸水性高分子 抗压强度 降级(电信) 计算机科学 集成学习 聚合物 复合材料 材料科学 人工智能 电信
作者
Maedeh Hosseinzadeh,Seyed Sina Mousavi,Mehdi Dehestani
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1): 18535-18535 被引量:3
标识
DOI:10.1038/s41598-024-68276-z
摘要

Super absorbent polymer (SAP) has a capacity to enhance the characteristics of cementitious composites in both their fresh and hardened forms. However, it is essential to recognize that the strength of SAP concrete may decrease. By altering the concrete composition and selecting the appropriate type of SAP, it is possible to reduce this reduction. This work employs machine learning (ML) to tackle the issue of strength degradation. The analysis considers ten distinct variables linked to concrete composition and the type of SAP. The study uses machine learning approaches that involve both regression and classification tasks. The use of ensemble learning greatly improves the quality and accuracy of the results, showing its superiority in combining several models to produce more precise predictions. The findings demonstrate that the Support Vector Machines (SVM) and Extreme Gradient Boosting (XGBoost) regression algorithms accurately forecasted the percentage of reduction in strength in SAP concrete. These predictions were based on the concrete composition and SAP details, resulting in R2 values of 0.90 and 0.88, respectively. Furthermore, XGBoost exhibited the highest accuracy, reaching 0.94, when compared to the various categorization algorithms. According to the results, the mean squared error (MSE) of the ensemble model demonstrated superior outcomes. Furthermore, the SHapley Additive exPlanations (SHAP) reveal that some variables, including SAP%, SAP size, and compressive strength, have a significant influence on the strength reduction model. This study aims to bridge the gap between academic research and practical application by developing a web application that employs ensemble learning to precisely forecast the reduction in compressive strength caused by the usage of SAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助yiyilan采纳,获得10
5秒前
cjh完成签到,获得积分10
14秒前
yiyilan完成签到,获得积分10
20秒前
PDE完成签到,获得积分10
33秒前
禾页完成签到 ,获得积分10
37秒前
58秒前
我睡觉的时候不困完成签到 ,获得积分10
58秒前
TonyLee完成签到,获得积分10
59秒前
飘逸碧琴完成签到,获得积分10
1分钟前
悠哉发布了新的文献求助10
1分钟前
1分钟前
罗伊黄发布了新的文献求助10
1分钟前
1分钟前
zhang1发布了新的文献求助10
1分钟前
摸鱼大王完成签到 ,获得积分10
1分钟前
1分钟前
beiye发布了新的文献求助10
1分钟前
科研通AI6应助悠哉采纳,获得10
1分钟前
齐多达完成签到 ,获得积分10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
beiye完成签到,获得积分10
1分钟前
依米完成签到,获得积分10
1分钟前
绮烟完成签到 ,获得积分10
1分钟前
迷路的成危完成签到,获得积分10
1分钟前
完美世界应助SKYE采纳,获得10
1分钟前
Jiawei完成签到,获得积分10
1分钟前
1分钟前
烟花应助zhang1采纳,获得10
2分钟前
2分钟前
2分钟前
猫猫发布了新的文献求助10
2分钟前
2分钟前
三泥完成签到,获得积分10
2分钟前
2分钟前
2分钟前
SKYE发布了新的文献求助10
2分钟前
3分钟前
冬日空虚完成签到,获得积分20
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534156
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582228
捐赠科研通 4562402
什么是DOI,文献DOI怎么找? 2500167
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450832