Multi-Objectives Optimization of Plastic Injection Molding Process Parameters Based on Numerical DNN-GA-MCS Strategy

材料科学 造型(装饰) 过程(计算) 工艺工程 复合材料 遗传算法 计算机科学 工程类 机器学习 操作系统
作者
Feng Guo,Dosuck Han,Naksoo Kim
出处
期刊:Polymers [MDPI AG]
卷期号:16 (16): 2247-2247 被引量:5
标识
DOI:10.3390/polym16162247
摘要

An intelligent optimization technique has been presented to enhance the multiple structural performance of PA6-20CF carbon fiber-reinforced polymer (CFRP) plastic injection molding (PIM) products. This approach integrates a deep neural network (DNN), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Monte Carlo simulation (MCS), collectively referred to as the DNN-GA-MCS strategy. The main objective is to ascertain complex process parameters while elucidating the intrinsic relationships between processing methods and material properties. To realize this, a numerical study on the PIM structural performance of an automotive front engine hood panel was conducted, considering fiber orientation tensor (FOT), warpage, and equivalent plastic strain (PEEQ). The mold temperature, melt temperature, packing pressure, packing time, injection time, cooling temperature, and cooling time were employed as design variables. Subsequently, multiple objective optimizations of the molding process parameters were employed by GA. The utilization of Z-score normalization metrics provided a robust framework for evaluating the comprehensive objective function. The numerical target response in PIM is extremely intricate, but the stability offered by the DNN-GA-MCS strategy ensures precision for accurate results. The enhancement effect of global and local multi-objectives on the molded polymer–metal hybrid (PMH) front hood panel was verified, and the numerical results showed that this strategy can quickly and accurately select the optimal process parameter settings. Compared with the training set mean value, the objectives were increased by 8.63%, 6.61%, and 9.75%, respectively. Compared to the full AA 5083 hood panel scenario, our design reduces weight by 16.67%, and achievements of 92.54%, 93.75%, and 106.85% were obtained in lateral, longitudinal, and torsional strain energy, respectively. In summary, our proposed methodology demonstrates considerable potential in improving the, highlighting its significant impact on the optimization of structural performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI6应助zisle采纳,获得10
2秒前
2秒前
3秒前
搜集达人应助liu采纳,获得10
3秒前
squeak发布了新的文献求助20
3秒前
科研通AI6应助zhangzhaoxin采纳,获得10
4秒前
小鱼儿完成签到,获得积分10
4秒前
段yt完成签到,获得积分10
4秒前
5秒前
lameliu完成签到,获得积分10
5秒前
Tapioca发布了新的文献求助10
5秒前
豆粒发布了新的文献求助10
5秒前
微微发布了新的文献求助10
6秒前
婉扬发布了新的文献求助10
6秒前
6秒前
6秒前
miaomiao发布了新的文献求助10
8秒前
8秒前
科研韭菜完成签到 ,获得积分10
8秒前
lllllkkkj完成签到,获得积分10
9秒前
9秒前
9秒前
DocM完成签到 ,获得积分10
9秒前
9秒前
迷人不凡发布了新的文献求助10
10秒前
悠悠发布了新的文献求助10
10秒前
欢呼山雁发布了新的文献求助10
11秒前
大黄蜂完成签到,获得积分10
11秒前
lewisll发布了新的文献求助10
11秒前
轨迹发布了新的文献求助10
11秒前
12秒前
13秒前
nothing发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
充电宝应助Karol采纳,获得10
14秒前
医只兔发布了新的文献求助10
14秒前
15秒前
明亮的方盒完成签到,获得积分10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Optics of Liquid Crystal Displays, 2nd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616514
求助须知:如何正确求助?哪些是违规求助? 4700995
关于积分的说明 14911385
捐赠科研通 4745164
什么是DOI,文献DOI怎么找? 2548853
邀请新用户注册赠送积分活动 1512145
关于科研通互助平台的介绍 1473972