Micro-expression recognition based on a novel GCN-transformer cooperation model for IoT-eHealth

电子健康 计算机科学 物联网 变压器 嵌入式系统 医疗保健 电气工程 工程类 电压 经济 经济增长
作者
Daxiang Li,Nannan Qiao,Xingcheng Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124763-124763
标识
DOI:10.1016/j.eswa.2024.124763
摘要

If a person is truly healthy, his/her well-being encompasses both physical and psychological health. However, the existing IoT-eHealth system typically focus only on monitoring the user's physical data through various sensors, neglecting their mental state. To enhance the intelligence level of IoT-eHealth system and enable it to have the psychological monitoring ability, a novel collaborative model based on Graph Convolutional Network (GCN) and Transformer is designed for Micro-Expression (ME) recognition in this paper. Firstly, facial information within each frame is transformed into a Spatial Topological Relationship Graph (STRG) by using facial landmarks detection and psychological relationship of local patches. Then, in order to automatically aggregate the key information on facial patches that contribute to ME recognition from the structured graph data, a Hierarchical Adaptive Graph Pooling (HAGP) module is designed for obtaining discriminative frame-level feature based on GCN utilizing graph structure and vertex global dependencies. Finally, in order to model the long-term dependencies among frames and capture the key frame-level features that are beneficial for ME recognition, a Temporal Sensitive Self-Attention (TSSA) mechanism is designed, and a novel Temporal Sensitive Transformer (TST) encoder is constructed based on TSSA to explore the evolution law of facial patterns and obtain discriminative video-level features that are helpful for ME recognition. In the comparative experiments of standard dataset verification and practical dataset testing, designed collaborative model is superior to other methods and can achieve the highest recognition accuracy, which almost can meet the application requirements of IoT-eHealth system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wang5945发布了新的文献求助10
2秒前
封金祥发布了新的文献求助10
2秒前
熹熹完成签到,获得积分10
3秒前
FashionBoy应助wow采纳,获得10
3秒前
98484应助义气的硬币采纳,获得20
4秒前
9527完成签到,获得积分10
4秒前
OmmeHabiba完成签到,获得积分10
4秒前
4秒前
现实的沛凝完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
振江完成签到,获得积分10
8秒前
baibai完成签到,获得积分10
8秒前
Akim应助否极泰来采纳,获得10
8秒前
Fangyuan发布了新的文献求助10
8秒前
研友_5Zl9D8发布了新的文献求助10
8秒前
苦无完成签到,获得积分10
9秒前
登山人发布了新的文献求助10
10秒前
10秒前
丘比特应助baroque采纳,获得10
10秒前
妙手回春板蓝根完成签到,获得积分10
11秒前
自信羊完成签到,获得积分20
11秒前
轩子墨发布了新的文献求助10
11秒前
里里完成签到,获得积分10
11秒前
xiami完成签到,获得积分10
13秒前
14秒前
lx完成签到,获得积分10
14秒前
15秒前
16秒前
星辰大海应助Fangyuan采纳,获得10
16秒前
天才莫拉尔完成签到,获得积分10
18秒前
yelv123完成签到,获得积分10
18秒前
baroque完成签到 ,获得积分10
21秒前
21秒前
共享精神应助登山人采纳,获得10
22秒前
鬲木发布了新的文献求助10
22秒前
Jasper应助大气的以寒采纳,获得10
23秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742