已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multi-modal Modeling Framework for Cold-start Short-video Recommendation

情态动词 计算机科学 冷启动(汽车) 航空航天工程 工程类 化学 高分子化学
作者
Gaode Chen,Ruina Sun,Yuezihan Jiang,Jiangxia Cao,Q. T. Zhang,Jingjian Lin,Han Li,Kun Gai,Xinghua Zhang
标识
DOI:10.1145/3640457.3688098
摘要

Short video has witnessed rapid growth in the past few years in multimedia platforms. To ensure the freshness of the videos, platforms receive a large number of user-uploaded videos every day, making collaborative filtering-based recommender methods suffer from the item cold-start problem (e.g., the new-coming videos are difficult to compete with existing videos). Consequently, increasing efforts tackle the cold-start issue from the content perspective, focusing on modeling the multi-modal preferences of users, a fair way to compete with new-coming and existing videos. However, recent studies ignore the existing gap between multi-modal embedding extraction and user interest modeling as well as the discrepant intensities of user preferences for different modalities. In this paper, we propose M3CSR, a multi-modal modeling framework for cold-start short video recommendation. Specifically, we preprocess content-oriented multi-modal features for items and obtain trainable category IDs by performing clustering. In each modality, we combine modality-specific cluster ID embedding and the mapped original modality feature as modality-specific representation of the item to address the gap. Meanwhile, M3CSR measures the user modality-specific intensity based on the correlation between modality-specific interest and behavioral interest and employs pairwise loss to further decouple user multi-modal interests. Extensive experiments on four real-world datasets demonstrate the superiority of our proposed model. The framework has been deployed on a billion-user scale short video application and has shown improvements in various commercial metrics within cold-start scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pathway完成签到 ,获得积分10
1秒前
无花果应助森气采纳,获得10
2秒前
yiwangpeiqi应助Maryamgvl采纳,获得10
3秒前
LIU完成签到 ,获得积分10
5秒前
吞吞完成签到 ,获得积分10
5秒前
Owen应助WSS采纳,获得10
10秒前
CodeCraft应助陈修美采纳,获得10
12秒前
13秒前
13秒前
Promise完成签到,获得积分10
17秒前
17秒前
枫叶应助朴素铁身采纳,获得10
18秒前
CodeCraft应助kk采纳,获得10
19秒前
追梦少年应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
追梦少年应助科研通管家采纳,获得10
20秒前
追梦少年应助科研通管家采纳,获得10
20秒前
20秒前
追梦少年应助科研通管家采纳,获得10
20秒前
20秒前
迅速的丑发布了新的文献求助10
20秒前
24秒前
poiuy发布了新的文献求助10
24秒前
咿咿呀呀完成签到,获得积分20
25秒前
27秒前
dryao完成签到,获得积分10
28秒前
32秒前
fangzh发布了新的文献求助10
33秒前
无花果应助ronnie采纳,获得10
35秒前
38秒前
Suraim完成签到,获得积分10
39秒前
舒心谷雪完成签到 ,获得积分10
40秒前
聪慧的凡灵应助preciousday采纳,获得30
43秒前
白桃乌龙汽水完成签到,获得积分10
43秒前
hqr完成签到,获得积分10
43秒前
47秒前
sdahjjyk发布了新的文献求助10
48秒前
54秒前
54秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Homogenization of Differential Operators and Integral Functionals 500
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927597
求助须知:如何正确求助?哪些是违规求助? 3472309
关于积分的说明 10972181
捐赠科研通 3202156
什么是DOI,文献DOI怎么找? 1769198
邀请新用户注册赠送积分活动 857963
科研通“疑难数据库(出版商)”最低求助积分说明 796225